Skip to Main Content Area
  • CPS-VO
    • Contact Support
  • Browse
    • Calendar
    • Announcements
    • Repositories
    • Groups
  • Search
    • Search for Content
    • Search for a Group
    • Search for People
    • Search for a Project
    • Tagcloud
      
 
Not a member?
Click here to register!
Forgot username or password?
 
Home
National Science Foundation

Cyber-Physical Systems Virtual Organization

Read-only archive of site from September 29, 2023.

CPS-VO

data-driven defense system

biblio

Visible to the public Power-Grid Controller Anomaly Detection with Enhanced Temporal Deep Learning

Submitted by aekwall on Mon, 01/20/2020 - 12:12pm
  • power-grid controller anomaly detection
  • control engineering computing
  • LSTM
  • actuators
  • data-driven defense system
  • enhanced temporal deep learning
  • Hardware Performance Counter
  • Kolmogorov–Smirnov test
  • power-grid controller
  • Human Factors
  • power-grid system
  • programmable logic controller
  • security-critical cyber-physical systems
  • temporal deep learning detection
  • temporal deep learning model
  • time 360.0 ms
  • zero trust
  • Scalability
  • deep learning
  • sensors
  • process control
  • power grids
  • power system security
  • power engineering computing
  • Zero-day attacks
  • Substations
  • policy-based governance
  • pubcrawl
  • Resiliency
  • learning (artificial intelligence)
  • invasive software
  • malware
  • Hardware

Terms of Use  |  ©2023. CPS-VO