Skip to Main Content Area
  • CPS-VO
    • Contact Support
  • Browse
    • Calendar
    • Announcements
    • Repositories
    • Groups
  • Search
    • Search for Content
    • Search for a Group
    • Search for People
    • Search for a Project
    • Tagcloud
      
 
Not a member?
Click here to register!
Forgot username or password?
 
Home
National Science Foundation

Cyber-Physical Systems Virtual Organization

Read-only archive of site from September 29, 2023.

CPS-VO

target protocol

biblio

Visible to the public SeqFuzzer: An Industrial Protocol Fuzzing Framework from a Deep Learning Perspective

Submitted by grigby1 on Fri, 04/03/2020 - 12:43pm
  • Protocols
  • learning (artificial intelligence)
  • Local area networks
  • modern industrial control systems
  • Policy Based Governance
  • policy-based governance
  • privacy
  • protocol frame structures
  • protocol frames
  • protocol verification
  • Industrial Safety
  • pubcrawl
  • security
  • security checks
  • security vulnerabilities
  • self learning
  • SeqFuzzer
  • stateful protocols
  • target protocol
  • vulnerability mining
  • deep learning perspective
  • composability
  • Compositionality
  • computer architecture
  • computer network security
  • Control Automation Technology devices
  • Data models
  • Decoding
  • deep learning
  • deep learning model
  • collaboration
  • EtherCAT
  • Fuzz Testing
  • fuzzing
  • fuzzing framework
  • industrial communication processes
  • industrial communication protocols
  • industrial network
  • industrial protocol fuzzing framework

Terms of Use  |  ©2023. CPS-VO