Skip to Main Content Area
  • CPS-VO
    • Contact Support
  • Browse
    • Calendar
    • Announcements
    • Repositories
    • Groups
  • Search
    • Search for Content
    • Search for a Group
    • Search for People
    • Search for a Project
    • Tagcloud
      
 
Not a member?
Click here to register!
Forgot username or password?
 
Home
National Science Foundation

Cyber-Physical Systems Virtual Organization

Read-only archive of site from September 29, 2023.

CPS-VO

MAT-POWER

biblio

Visible to the public Predicting Cascading Failures in Power Grids using Machine Learning Algorithms

Submitted by grigby1 on Fri, 04/24/2020 - 4:38pm
  • MAT-POWER
  • cascading failure data set
  • cascading failure prediction
  • cascading failure simulator framework
  • Cascading Failures
  • data-driven technique
  • edge betweenness centrality
  • linear regression
  • load shedding
  • massive blackouts
  • cascading failure data
  • Monte-Carlo simulation
  • power grid operating parameters
  • power-grid engineers
  • real-world power grids
  • regression analysis
  • topological parameters
  • transmission line failures
  • Vulnerability prediction
  • Power Grid Vulnerability Assessment
  • power grids
  • machine learning
  • machine learning algorithms
  • pubcrawl
  • resilience
  • Resiliency
  • power engineering computing
  • composability
  • Load modeling
  • pattern classification
  • learning (artificial intelligence)
  • Metrics
  • failure analysis
  • power system reliability
  • power system faults
  • Power system protection
  • power transmission lines
  • average shortest distance
  • cascade data generation

Terms of Use  |  ©2023. CPS-VO