Skip to Main Content Area
  • CPS-VO
    • Contact Support
  • Browse
    • Calendar
    • Announcements
    • Repositories
    • Groups
  • Search
    • Search for Content
    • Search for a Group
    • Search for People
    • Search for a Project
    • Tagcloud
      
 
Not a member?
Click here to register!
Forgot username or password?
 
Home
National Science Foundation

Cyber-Physical Systems Virtual Organization

Read-only archive of site from September 29, 2023.

CPS-VO

error distribution

biblio

Visible to the public Anomaly Detection in Network Traffic Using Dynamic Graph Mining with a Sparse Autoencoder

Submitted by grigby1 on Fri, 07/03/2020 - 4:54pm
  • outlier error values
  • highly structured adjacency matrix structures
  • increasing sparseness
  • learning (artificial intelligence)
  • Matrix decomposition
  • Metrics
  • network based attacks
  • network emulator
  • network security
  • network traffic
  • online learning algorithm
  • original adjacency matrix
  • Heuristic algorithms
  • pubcrawl
  • representative ecommerce traffic
  • Resiliency
  • resultant adjacency matrix
  • serious economic consequences
  • singular value decomposition
  • sparse autoencoder
  • Sparse matrices
  • telecommunication traffic
  • time 225.0 min
  • decomposition
  • autoencoder hyper-parameters
  • Bipartite graph
  • composability
  • Compositionality
  • Computer crime
  • computer network security
  • contiguous time intervals
  • cyber physical systems
  • Data mining
  • DDoS Attacks
  • anomaly detection algorithm
  • dynamic bipartite graph increments
  • dynamic graph
  • dynamic graph mining
  • dynamic network traffic
  • Dynamic Networks and Security
  • ecommerce websites
  • error distribution
  • GAAD
  • gaussian distribution
  • graph theory

Terms of Use  |  ©2023. CPS-VO