Biblio

Found 3403 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2023-07-31
Albatoosh, Ahmed H., Shuja'a, Mohamed Ibrahim, Al-Nedawe, Basman M..  2022.  Effectiveness Improvement of Offset Pulse Position Modulation System Using Reed-Solomon Codes. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1—5.
Currently, the pulse position modulation (PPM) schemes are suffering from bandwidth application where the line rate is double that of the initial data rate. Thus, the offset pulse position modulation (OPPM) has been suggested to rectify this concern. Several attempts to improve the OPPM can be found in the open literature. This study focuses on the utilization of Reed Solomon (RS) codes to enhance the forward error correction (FEC) bit error rate, which is not yet explored. The performance of errors of the uncoded OPPM was compared to the one used by RS coded OPPM using the number of photons per pulse, the transmission's efficacy, and bandwidth growth. The results demonstrate that employing FEC coding would increase the system's error performance especially when the RS is operating at its finest settings. Specifically, when operating with a capacity that is equivalent to or even more 0.7, the OPPM with RS code outperforms the uncoded OPPM where the OPPM with MLSD needs only 1.2×103 photons per pulse with an ideal coding rate of about 3/4.
2023-07-13
Salman, Zainab, Alomary, Alauddin.  2022.  An Efficient Approach to Reduce the Encryption and Decryption Time Based on the Concept of Unique Values. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :535–540.
Data security has become the most important issue in every institution or company. With the existence of hackers, intruders, and third parties on the cloud, securing data has become more challenging. This paper uses a hybrid encryption method that is based on the Elliptic Curve Cryptography (ECC) and Fully Homomorphic Encryption (FHE). ECC is used as a lightweight encryption algorithm that can provide a good level of security. Besides, FHE is used to enable data computation on the encrypted data in the cloud. In this paper, the concept of unique values is combined with the hybrid encryption method. Using the concept of unique values contributes to decreasing the encryption and decryption time obviously. To evaluate the performance of the combined encryption method, the provided results are compared with the ones in the encryption method without using the concept of unique values. Experiments show that the combined encryption method can reduce the encryption time up to 43% and the decryption time up to 56%.
ISSN: 2770-7466
2023-07-28
Abu-Khadrah, Ahmed.  2022.  An Efficient Fuzzy Logic Modelling of TiN Coating Thickness. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—5.
In this paper, fuzzy logic was implemented as a proposed approach for modelling of Thickness as an output response of thin film layer in Titanium Nitrite (TiN). The layer was deposited using Physical Vapor Deposition (PVD) process that uses a sputtering technique to coat insert cutting tools with TiN. Central cubic design (CCD) was used for designing the optimal points of the experiment. In order to develop the fuzzy rules, the experimental data that collected by PVD was used. Triangular membership functions (Trimf) were used to develop the fuzzy prediction model. Residual error (e) and prediction accuracy (A) were used for validating the result of the proposed fuzzy model. The result of the developed fuzzy model with triangular membership function revealed that the average residual error of 0.2 is low and acceptable. Furthermore, the model obtained high prediction accuracy with 90.04%. The result revealed that the rule-based model of fuzzy logic could be an efficient approach to predict coatings layer thickness in the TiN.
2023-03-03
Gunathilake, Nilupulee A., Al-Dubai, Ahmed, Buchanan, William J., Lo, Owen.  2022.  Electromagnetic Side-Channel Attack Resilience against PRESENT Lightweight Block Cipher. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :51–55.
Lightweight cryptography is a novel diversion from conventional cryptography that targets internet-of-things (IoT) platform due to resource constraints. In comparison, it offers smaller cryptographic primitives such as shorter key sizes, block sizes and lesser energy drainage. The main focus can be seen in algorithm developments in this emerging subject. Thus, verification is carried out based upon theoretical (mathematical) proofs mostly. Among the few available side-channel analysis studies found in literature, the highest percentage is taken by power attacks. PRESENT is a promising lightweight block cipher to be included in IoT devices in the near future. Thus, the emphasis of this paper is on lightweight cryptology, and our investigation shows unavailability of a correlation electromagnetic analysis (CEMA) of it. Hence, in an effort to fill in this research gap, we opted to investigate the capabilities of CEMA against the PRESENT algorithm. This work aims to determine the probability of secret key leakage with a minimum number of electromagnetic (EM) waveforms possible. The process initially started from a simple EM analysis (SEMA) and gradually enhanced up to a CEMA. This paper presents our methodology in attack modelling, current results that indicate a probability of leaking seven bytes of the key and upcoming plans for optimisation. In addition, introductions to lightweight cryptanalysis and theories of EMA are also included.
2023-07-14
Dib, S., Amzert, A. K., Grimes, M., Benchiheb, A., Benmeddour, F..  2022.  Elliptic Curve Cryptography for Medical Image Security. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD). :1782–1787.
To contribute to medical data security, we propose the application of a modified algorithm on elliptical curves (ECC), initially proposed for text encryption. We implement this algorithm by eliminating the sender-receiver lookup table and grouping the pixel values into pairs to form points on a predefined elliptical curve. Simulation results show that the proposed algorithm offers the best compromise between the quality and the speed of cipher / decipher, especially for large images. A comparative study between ECC and AlGamel showed that the proposed algorithm offers better performance and its application, on medical images, is promising. Medical images contain many pieces of information and are often large. If the cryptographic operation is performed on every single pixel it will take more time. So, working on groups of pixels will be strongly recommended to save time and space.
ISSN: 2474-0446
2023-02-24
Rivera, Abel O. Gomez, White, Evan M., Acosta, Jaime C., Tosh, Deepak.  2022.  Enabling Device Trustworthiness for SDN-Enabled Internet -of- Battlefield Things. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1—7.
Military networks consist of heterogeneous devices that provide soldiers with real-time terrain and mission intel-ligence. The development of next-generation Software Defined Networks (SDN)-enabled devices is enabling the modernization of traditional military networks. Commonly, traditional military networks take the trustworthiness of devices for granted. How-ever, the recent modernization of military networks introduces cyber attacks such as data and identity spoofing attacks. Hence, it is crucial to ensure the trustworthiness of network traffic to ensure the mission's outcome. This work proposes a Continuous Behavior-based Authentication (CBA) protocol that integrates network traffic analysis techniques to provide robust and efficient network management flow by separating data and control planes in SDN-enabled military networks. The evaluation of the CBA protocol aimed to measure the efficiency of the proposed protocol in realistic military networks. Furthermore, we analyze the overall network overhead of the CBA protocol and its accuracy to detect rogue network traffic data from field devices.
2023-06-30
Anju, J., Shreelekshmi, R..  2022.  An Enhanced Copy-deterrence scheme for Secure Image Outsourcing in Cloud. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :97–102.
In this paper, we propose a novel watermarking-based copy deterrence scheme for identifying data leaks through authorized query users in secure image outsourcing systems. The scheme generates watermarks unique to each query user, which are embedded in the retrieved encrypted images. During unauthorized distribution, the watermark embedded in the image is extracted to determine the untrustworthy query user. Experimental results show that the proposed scheme achieves minimal information loss, faster embedding and better resistance to JPEG compression attacks compared with the state-of-the-art schemes.
2022-12-02
Taleb, Sylia Mekhmoukh, Meraihi, Yassine, Mirjalili, Seyedali, Acheli, Dalila, Ramdane-Cherif, Amar, Gabis, Asma Benmessaoud.  2022.  Enhanced Honey Badger Algorithm for mesh routers placement problem in wireless mesh networks. 2022 International Conference on Advanced Aspects of Software Engineering (ICAASE). :1—6.
This paper proposes an improved version of the newly developed Honey Badger Algorithm (HBA), called Generalized opposition Based-Learning HBA (GOBL-HBA), for solving the mesh routers placement problem. The proposed GOBLHBA is based on the integration of the generalized opposition-based learning strategy into the original HBA. GOBL-HBA is validated in terms of three performance metrics such as user coverage, network connectivity, and fitness value. The evaluation is done using various scenarios with different number of mesh clients, number of mesh routers, and coverage radius values. The simulation results revealed the efficiency of GOBL-HBA when compared with the classical HBA, Genetic Algorithm (GA), and Particle Swarm optimization (PSO).
2023-01-06
Anastasakis, Zacharias, Psychogyios, Konstantinos, Velivassaki, Terpsi, Bourou, Stavroula, Voulkidis, Artemis, Skias, Dimitrios, Gonos, Antonis, Zahariadis, Theodore.  2022.  Enhancing Cyber Security in IoT Systems using FL-based IDS with Differential Privacy. 2022 Global Information Infrastructure and Networking Symposium (GIIS). :30—34.
Nowadays, IoT networks and devices exist in our everyday life, capturing and carrying unlimited data. However, increasing penetration of connected systems and devices implies rising threats for cybersecurity with IoT systems suffering from network attacks. Artificial Intelligence (AI) and Machine Learning take advantage of huge volumes of IoT network logs to enhance their cybersecurity in IoT. However, these data are often desired to remain private. Federated Learning (FL) provides a potential solution which enables collaborative training of attack detection model among a set of federated nodes, while preserving privacy as data remain local and are never disclosed or processed on central servers. While FL is resilient and resolves, up to a point, data governance and ownership issues, it does not guarantee security and privacy by design. Adversaries could interfere with the communication process, expose network vulnerabilities, and manipulate the training process, thus affecting the performance of the trained model. In this paper, we present a federated learning model which can successfully detect network attacks in IoT systems. Moreover, we evaluate its performance under various settings of differential privacy as a privacy preserving technique and configurations of the participating nodes. We prove that the proposed model protects the privacy without actually compromising performance. Our model realizes a limited performance impact of only ∼ 7% less testing accuracy compared to the baseline while simultaneously guaranteeing security and applicability.
2023-08-11
Ambedkar, B. R., Bharti, P. K., Husain, Akhtar.  2022.  Enhancing the Performance of Hash Function Using Autonomous Initial Value Proposed Secure Hash Algorithm 256. 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT). :560—565.
To verify the integrity and confidentiality of data communicated through the web is a very big issue worldwide because every person wants very fast computing and secure electronic data communication via the web. The authentication of electronic data is done by hashing algorithms. Presently researchers are using one-time padding to convert variable-length input messages into a block of fixed length and also using constant initial values that are constant for any input message. So this reason we are proposing the autonomous initial value proposed secure hash algorithm-256 (AIVPSHA256) and we are enhancing the performance of the hash function by designing and compuiting its experimental results in python 3.9.5 programming language.
2023-06-23
Angiulli, Fabrizio, Furfaro, Angelo, Saccá, Domenico, Sacco, Ludovica.  2022.  Evaluating Deep Packet Inspection in Large-scale Data Processing. 2022 9th International Conference on Future Internet of Things and Cloud (FiCloud). :16–23.
The Internet has evolved to the point that gigabytes and even terabytes of data are generated and processed on a daily basis. Such a stream of data is characterised by high volume, velocity and variety and is referred to as Big Data. Traditional data processing tools can no longer be used to process big data, because they were not designed to handle such a massive amount of data. This problem concerns also cyber security, where tools like intrusion detection systems employ classification algorithms to analyse the network traffic. Achieving a high accuracy attack detection becomes harder when the amount of data increases and the algorithms must be efficient enough to keep up with the throughput of a huge data stream. Due to the challenges posed by a big data environment, some monitoring systems have already shifted from deep packet inspection to flow-level inspection. The goal of this paper is to evaluate the applicability of an existing intrusion detection technique that performs deep packet inspection in a big data setting. We have conducted several experiments with Apache Spark to assess the performance of the technique when classifying anomalous packets, showing that it benefits from the use of Spark.
2023-02-17
Rossi, Alessandra, Andriella, Antonio, Rossi, Silvia, Torras, Carme, Alenyà, Guillem.  2022.  Evaluating the Effect of Theory of Mind on People’s Trust in a Faulty Robot. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :477–482.
The success of human-robot interaction is strongly affected by the people’s ability to infer others’ intentions and behaviours, and the level of people’s trust that others will abide by their same principles and social conventions to achieve a common goal. The ability of understanding and reasoning about other agents’ mental states is known as Theory of Mind (ToM). ToM and trust, therefore, are key factors in the positive outcome of human-robot interaction. We believe that a robot endowed with a ToM is able to gain people’s trust, even when this may occasionally make errors.In this work, we present a user study in the field in which participants (N=123) interacted with a robot that may or may not have a ToM, and may or may not exhibit erroneous behaviour. Our findings indicate that a robot with ToM is perceived as more reliable, and they trusted it more than a robot without a ToM even when the robot made errors. Finally, ToM results to be a key driver for tuning people’s trust in the robot even when the initial condition of the interaction changed (i.e., loss and regain of trust in a longer relationship).
ISSN: 1944-9437
2023-03-31
Winarno, Agus, Angraini, Novita, Hardani, Muhammad Salmon, Harwahyu, Ruki, Sari, Riri Fitri.  2022.  Evaluation of Decision Matrix, Hash Rate and Attacker Regions Effects in Bitcoin Network Securities. 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom). :72–77.
Bitcoin is a famously decentralized cryptocurrency. Bitcoin is excellent because it is a digital currency that provides convenience and security in transactions. Transaction security in Bitcoin uses a consensus involving a distributed system, the security of this system generates a hash sequence with a Proof of Work (PoW) mechanism. However, in its implementation, various attacks appear that are used to generate profits from the existing system. Attackers can use various types of methods to get an unfair portion of the mining income. Such attacks are commonly referred to as Mining attacks. Among which the famous is the Selfish Mining attack. In this study, we simulate the effect of changing decision matrix, attacker region, attacker hash rate on selfish miner attacks by using the opensource NS3 platform. The experiment aims to see the effect of using 1%, 10%, and 20% decision matrices with different attacker regions and different attacker hash rates on Bitcoin selfish mining income. The result of this study shows that regional North America and Europe have the advantage in doing selfish mining attacks. This advantage is also supported by increasing the decision matrix from 1%, 10%, 20%. The highest attacker income, when using decision matrix 20% in North America using 16 nodes on 0.3 hash rate with income 129 BTC. For the hash rate, the best result for a selfish mining attack is between 27% to 30% hash rate.
2023-04-14
Borys, Adam, Kamruzzaman, Abu, Thakur, Hasnain Nizam, Brickley, Joseph C., Ali, Md L., Thakur, Kutub.  2022.  An Evaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet. 2022 IEEE World AI IoT Congress (AIIoT). :725–729.
This paper dives into the growing world of IoT botnets that have taken the world by storm in the past five years. Though alone an IP camera cannot produce enough traffic to be considered a DDoS. But a botnet that has over 150,000 connected IP cameras can generate as much as 1 Tbps in traffic. Botnets catch many by surprise because their attacks and infections may not be as apparent as a DDoS, some other cases include using these cameras and printers for extracting information or quietly mine cryptocurrency at the IoT device owner's expense. Here we analyze damages on IoT hacking and define botnet architecture. An overview of Mirai botnet and cryptojacking provided to better understand the IoT botnets.
Salcedo, Mathew David, Abid, Mehdi, Kim, Yoohwan, Jo, Ju-Yeon.  2022.  Evil-Twin Browsers: Using Open-Source Code to Clone Browsers for Malicious Purposes. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0776—0784.
Browsers are one of the most widely used types of software around the world. This prevalence makes browsers a prime target for cyberattacks. To mitigate these threats, users can practice safe browsing habits and take advantage of the security features available to browsers. These protections, however, could be severely crippled if the browser itself were malicious. Presented in this paper is the concept of the evil-twin browser (ETB), a clone of a legitimate browser that looks and behaves identically to the original browser, but discreetly performs other tasks that harm a user's security. To better understand the concept of the evil-twin browser, a prototype ETB named ChroNe was developed. The creation and installation process of ChroN e is discussed in this paper. This paper also explores the motivation behind creating such a browser, examines existing relevant work, inspects the open-source codebase Chromium that assisted in ChroNe's development, and discusses relevant topics like ways to deliver an ETB, the capabilities of an ETB, and possible ways to defend against ETBs.
2023-08-25
Utomo, Rio Guntur, Yahya, Farashazillah, Almarshad, Fahdah, Wills, Gary B.  2022.  Factors Affecting Information Assurance for Big Data. 2022 1st International Conference on Software Engineering and Information Technology (ICoSEIT). :1–5.
Big Data is a concept used in various sectors today, including the government sector in the Smart Government initiative. With a large amount of structured and unstructured data being managed, information assurance becomes important in adopting Big Data. However, so far, no research has focused on information assurance for Big Data. This paper identified information assurance factors for Big Data. This research used the systematic snapshot mapping approach to examine factors relating to information assurance from the literature related to Big Data from 2011 through 2021. The data extraction process in gathering 15 relevant papers. The findings revealed ten factors influencing the information assurance implementation for Big Data, with the security factor becoming the most concentrated factor with 18 sub-factors. The findings are expected to serve as a foundation for adopting information assurance for Big Data to develop an information assurance framework for Smart Government.
2023-01-05
Jovanovic, Dijana, Marjanovic, Marina, Antonijevic, Milos, Zivkovic, Miodrag, Budimirovic, Nebojsa, Bacanin, Nebojsa.  2022.  Feature Selection by Improved Sand Cat Swarm Optimizer for Intrusion Detection. 2022 International Conference on Artificial Intelligence in Everything (AIE). :685–690.
The rapid growth of number of devices that are connected to internet of things (IoT) networks, increases the severity of security problems that need to be solved in order to provide safe environment for network data exchange. The discovery of new vulnerabilities is everyday challenge for security experts and many novel methods for detection and prevention of intrusions are being developed for dealing with this issue. To overcome these shortcomings, artificial intelligence (AI) can be used in development of advanced intrusion detection systems (IDS). This allows such system to adapt to emerging threats, react in real-time and adjust its behavior based on previous experiences. On the other hand, the traffic classification task becomes more difficult because of the large amount of data generated by network systems and high processing demands. For this reason, feature selection (FS) process is applied to reduce data complexity by removing less relevant data for the active classification task and therefore improving algorithm's accuracy. In this work, hybrid version of recently proposed sand cat swarm optimizer algorithm is proposed for feature selection with the goal of increasing performance of extreme learning machine classifier. The performance improvements are demonstrated by validating the proposed method on two well-known datasets - UNSW-NB15 and CICIDS-2017, and comparing the results with those reported for other cutting-edge algorithms that are dealing with the same problems and work in a similar configuration.
2023-08-25
Padmavathi, G., Shanmugapriya, D., Asha, S..  2022.  A Framework to Detect the Malicious Insider Threat in Cloud Environment using Supervised Learning Methods. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :354—358.
A malicious insider threat is more vulnerable to an organization. It is necessary to detect the malicious insider because of its huge impact to an organization. The occurrence of a malicious insider threat is less but quite destructive. So, the major focus of this paper is to detect the malicious insider threat in an organization. The traditional insider threat detection algorithm is not suitable for real time insider threat detection. A supervised learning-based anomaly detection technique is used to classify, predict and detect the malicious and non-malicious activity based on highest level of anomaly score. In this paper, a framework is proposed to detect the malicious insider threat using supervised learning-based anomaly detection. It is used to detect the malicious insider threat activity using One-Class Support Vector Machine (OCSVM). The experimental results shows that the proposed framework using OCSVM performs well and detects the malicious insider who obtain huge anomaly score than a normal user.
2023-07-31
Abdaoui, Abderrazak, Erbad, Aiman, Al-Ali, Abdulla Khalid, Mohamed, Amr, Guizani, Mohsen.  2022.  Fuzzy Elliptic Curve Cryptography for Authentication in Internet of Things. IEEE Internet of Things Journal. 9:9987—9998.
The security and privacy of the network in Internet of Things (IoT) systems are becoming more critical as we are more dependent on smart systems. Considering that packets are exchanged between the end user and the sensing devices, it is then important to ensure the security, privacy, and integrity of the transmitted data by designing a secure and a lightweight authentication protocol for IoT systems. In this article, in order to improve the authentication and the encryption in IoT systems, we present a novel method of authentication and encryption based on elliptic curve cryptography (ECC) using random numbers generated by fuzzy logic. We evaluate our novel key generation method by using standard randomness tests, such as: frequency test, frequency test with mono block, run test, discrete Fourier transform (DFT) test, and advanced DFT test. Our results show superior performance compared to existing ECC based on shift registers. In addition, we apply some attack algorithms, such as Pollard’s \textbackslashrho and Baby-step Giant-step, to evaluate the vulnerability of the proposed scheme.
2023-01-13
Ahmad, Adil, Lee, Sangho, Peinado, Marcus.  2022.  HARDLOG: Practical Tamper-Proof System Auditing Using a Novel Audit Device. 2022 IEEE Symposium on Security and Privacy (SP). :1791—1807.
Audit systems maintain detailed logs of security-related events on enterprise machines to forensically analyze potential incidents. In principle, these logs should be safely stored in a secure location (e.g., network storage) as soon as they are produced, but this incurs prohibitive slowdown to a monitored machine. Hence, existing audit systems protect batched logs asynchronously (e.g., after tens of seconds), but this allows attackers to tamper with unprotected logs.This paper presents HARDLOG, a practical and effective system that employs a novel audit device to provide fine-grained log protection with minimal performance slowdown. HARDLOG implements criticality-aware log protection: it ensures that logs are synchronously protected in the audit device before an infrequent security-critical event is allowed to execute, but logs are asynchronously protected on frequent non-critical events to minimize performance overhead. Importantly, even on non-critical events, HARDLOG ensures bounded-asynchronous protection: it sends log entries to the audit device within a tiny, bounded delay from their creation using well-known real-time techniques. To demonstrate HARDLOG’S effectiveness, we prototyped an audit device using commodity components and implemented a reference audit system for Linux. Our prototype achieves a bounded protection delay of 15 milliseconds at non-critical events alongside undelayed protection at critical events. We also show that, for diverse real-world programs, HARDLOG incurs a geometric mean performance slowdown of only 6.3%, hence it is suitable for many real-world deployment scenarios.
2022-12-07
Chedurupalli, Shivakumar, Karthik Reddy, K, Akhil Raman, T S, James Raju, K.C.  2022.  High Overtone Bulk Acoustic Resonator with improved effective coupling coefficient. 2022 IEEE International Symposium on Applications of Ferroelectrics (ISAF). :1—4.
A High Overtone Bulk Acoustic Wave Resonator (HBAR) is fabricated with the active material being Ba0.5Sr0.5TiO3 (BST). Owing to its strong electrostrictive property, the BST needs an external dc voltage to yield an electromechanical coupling. The variations in resonances with respect to varying dc fields are noted and analyzed with the aid of an Resonant Spectrum Method (RSM) model. Effective coupling coefficient \$(\textbackslashmathrmK\_\textbackslashmathrme\textbackslashmathrmf\textbackslashmathrmfˆ2(%))\$ in the case of employed MIM based structure is observed and the comparisons are drawn with the corresponding values of the CPC structures. An improvement of 70% in the value of \$\textbackslashmathrmK\_\textbackslashmathrme\textbackslashmathrmf\textbackslashmathrmfˆ2\$(%)at 1.34 GHz is witnessed in MIM structures because of direct access to the bottom electrode of the structure.
2023-02-17
Ferrell, Uma D., Anderegg, Alfred H. Andy.  2022.  Holistic Assurance Case for System-of-Systems. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). :1–9.
Aviation is a highly sophisticated and complex System-of-Systems (SoSs) with equally complex safety oversight. As novel products with autonomous functions and interactions between component systems are adopted, the number of interdependencies within and among the SoS grows. These interactions may not always be obvious. Understanding how proposed products (component systems) fit into the context of a larger SoS is essential to promote the safe use of new as well as conventional technology.UL 4600, is a Standard for Safety for the Evaluation of Autonomous Products specifically written for completely autonomous Load vehicles. The goal-based, technology-neutral features of this standard make it adaptable to other industries and applications.This paper, using the philosophy of UL 4600, gives guidance for creating an assurance case for products in an SoS context. An assurance argument is a cogent structured argument concluding that an autonomous aircraft system possesses all applicable through-life performance and safety properties. The assurance case process can be repeated at each level in the SoS: aircraft, aircraft system, unmodified components, and modified components. The original Equipment Manufacturer (OEM) develops the assurance case for the whole aircraft envisioned in the type certification process. Assurance cases are continuously validated by collecting and analyzing Safety Performance Indicators (SPIs). SPIs provide predictive safety information, thus offering an opportunity to improve safety by preventing incidents and accidents. Continuous validation is essential for risk-based approval of autonomously evolving (dynamic) systems, learning systems, and new technology. System variants, derivatives, and components are captured in a subordinate assurance case by their developer. These variants of the assurance case inherently reflect the evolution of the vehicle-level derivatives and options in the context of their specific target ecosystem. These subordinate assurance cases are nested under the argument put forward by the OEM of components and aircraft, for certification credit.It has become a common practice in aviation to address design hazards through operational mitigations. It is also common for hazards noted in an aircraft component system to be mitigated within another component system. Where a component system depends on risk mitigation in another component of the SoS, organizational responsibilities must be stated explicitly in the assurance case. However, current practices do not formalize accounting for these dependencies by the parties responsible for design; consequently, subsequent modifications are made without the benefit of critical safety-related information from the OEMs. The resulting assurance cases, including 3rd party vehicle modifications, must be scrutinized as part of the holistic validation process.When changes are made to a product represented within the assurance case, their impact must be analyzed and reflected in an updated assurance case. An OEM can facilitate this by integrating affected assurance cases across their customer’s supply chains to ensure their validity. The OEM is expected to exercise the sphere-of-control over their product even if it includes outsourced components. Any organization that modifies a product (with or without assurance argumentation information from other suppliers) is accountable for validating the conditions for any dependent mitigations. For example, the OEM may manage the assurance argumentation by identifying requirements and supporting SPI that must be applied in all component assurance cases. For their part, component assurance cases must accommodate all spheres-of-control that mitigate the risks they present in their respective contexts. The assurance case must express how interdependent mitigations will collectively assure the outcome. These considerations are much more than interface requirements and include explicit hazard mitigation dependencies between SoS components. A properly integrated SoS assurance case reflects a set of interdependent systems that could be independently developed..Even in this extremely interconnected environment, stakeholders must make accommodations for the independent evolution of products in a manner that protects proprietary information, domain knowledge, and safety data. The collective safety outcome for the SoS is based on the interdependence of mitigations by each constituent component and could not be accomplished by any single component. This dependency must be explicit in the assurance case and should include operational mitigations predicated on people and processes.Assurance cases could be used to gain regulatory approval of conventional and new technology. They can also serve to demonstrate consistency with a desired level of safety, especially in SoSs whose existing standards may not be adequate. This paper also provides guidelines for preserving alignment between component assurance cases along a product supply chain, and the respective SoSs that they support. It shows how assurance is a continuous process that spans product evolution through the monitoring of interdependent requirements and SPI. The interdependency necessary for a successful assurance case encourages stakeholders to identify and formally accept critical interconnections between related organizations. The resulting coordination promotes accountability for safety through increased awareness and the cultivation of a positive safety culture.
ISSN: 2155-7209
2023-05-19
Vega-Martinez, Valeria, Cooper, Austin, Vera, Brandon, Aljohani, Nader, Bretas, Arturo.  2022.  Hybrid Data-Driven Physics-Based Model Framework Implementation: Towards a Secure Cyber-Physical Operation of the Smart Grid. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). :1—5.
False data injection cyber-attack detection models on smart grid operation have been much explored recently, considering analytical physics-based and data-driven solutions. Recently, a hybrid data-driven physics-based model framework for monitoring the smart grid is developed. However, the framework has not been implemented in real-time environment yet. In this paper, the framework of the hybrid model is developed within a real-time simulation environment. OPAL-RT real-time simulator is used to enable Hardware-in-the-Loop testing of the framework. IEEE 9-bus system is considered as a testing grid for gaining insight. The process of building the framework and the challenges faced during development are presented. The performance of the framework is investigated under various false data injection attacks.
2023-02-28
Gopalakrishna, Nikhil Krishna, Anandayuvaraj, Dharun, Detti, Annan, Bland, Forrest Lee, Rahaman, Sazzadur, Davis, James C..  2022.  “If security is required”: Engineering and Security Practices for Machine Learning-based IoT Devices. 2022 IEEE/ACM 4th International Workshop on Software Engineering Research and Practices for the IoT (SERP4IoT). :1—8.
The latest generation of IoT systems incorporate machine learning (ML) technologies on edge devices. This introduces new engineering challenges to bring ML onto resource-constrained hardware, and complications for ensuring system security and privacy. Existing research prescribes iterative processes for machine learning enabled IoT products to ease development and increase product success. However, these processes mostly focus on existing practices used in other generic software development areas and are not specialized for the purpose of machine learning or IoT devices. This research seeks to characterize engineering processes and security practices for ML-enabled IoT systems through the lens of the engineering lifecycle. We collected data from practitioners through a survey (N=25) and interviews (N=4). We found that security processes and engineering methods vary by company. Respondents emphasized the engineering cost of security analysis and threat modeling, and trade-offs with business needs. Engineers reduce their security investment if it is not an explicit requirement. The threats of IP theft and reverse engineering were a consistent concern among practitioners when deploying ML for IoT devices. Based on our findings, we recommend further research into understanding engineering cost, compliance, and security trade-offs.
2023-04-14
Raavi, Rupendra, Alqarni, Mansour, Hung, Patrick C.K.  2022.  Implementation of Machine Learning for CAPTCHAs Authentication Using Facial Recognition. 2022 IEEE International Conference on Data Science and Information System (ICDSIS). :1–5.
Web-based technologies are evolving day by day and becoming more interactive and secure. Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is one of the security features that help detect automated bots on the Web. Earlier captcha was complex designed text-based, but some optical recognition-based algorithms can be used to crack it. That is why now the captcha system is image-based. But after the arrival of strong image recognition algorithms, image-based captchas can also be cracked nowadays. In this paper, we propose a new captcha system that can be used to differentiate real humans and bots on the Web. We use advanced deep layers with pre-trained machine learning models for captchas authentication using a facial recognition system.