Biblio

Found 3403 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2015-12-29
Ashiq Rahman, Ehab Al-Shaer.  Submitted.  Automated Synthesis of Resilient Network Access Controls: A Formal Framework with Refinement. IEEE Transactions of Parallel and Distributed Computing (TPDC),.

Due to the extensive use of network services and emerging security threats, enterprise networks deploy varieties of security devices for controlling resource access based on organizational security requirements. These requirements need fine-grained access control rules based on heterogeneous isolation patterns like access denial, trusted communication, and payload inspection. Organizations are also seeking for usable and optimal security configurations that can harden the network security within enterprise budget constraints. In order to design a security architecture, i.e., the distribution of security devices along with their security policies, that satisfies the organizational security requirements as well as the business constraints, it is required to analyze various alternative security architectures considering placements of network security devices in the network and the corresponding access controls. In this paper, we present an automated formal framework for synthesizing network security configurations. The main design alternatives include different kinds of isolation patterns for network traffic flows. The framework takes security requirements and business constraints along with the network topology as inputs. Then, it synthesizes cost-effective security configurations satisfying the constraints and provides placements of different security devices, optimally distributed in the network, according to the given network topology. In addition, we provide a hypothesis testing-based security architecture refinement mechanism that explores various security design alternatives using ConfigSynth and improves the security architecture by systematically increasing the security requirements. We demonstrate the execution of ConfigSynth and the refinement mechanism using case studies. Finally, we evaluate their scalability using simulated experiments.
 

2018-05-28
A. Sturaro, S. Silvestri, M. Conti,, S. K. Das.  Submitted.  Characterizing Cascade Failures in Inter-Dependent Smart Grid Networks. IEEE Transactions on Smart Grid (Submitted in Oct 2017).
2018-07-26
Anastasia Mavridou, Tamas Kecskes, Qishen Zhang, Janos Sztipanovits.  Submitted.  A Common Integrated Framework for Heterogeneous Modeling Services.

Under submission at 6th International Workshop on the Globalization of Modeling Language (GEMOC)

2018-05-17
2019-05-31
2018-05-15
Saeed, Ahmed, Harras, Khaled, Zegura, Ellen, Ammar, Mostafa.  Submitted.  Local and Low-cost Whitespace Detection. Proc. IEEE International Conference on Distributed Computing Systems}, issue date = {June 20017.
2018-05-17
2018-05-16
2018-05-17
2018-05-11
2018-07-26
Qishen Zhang, Tamas Kecskes, Anastasia Mavridou, Janos Sztipanovits.  Submitted.  Towards Bridging the Gap Between Model- and Data- Driven Tool suites.

Under submission at Analytics and Mining of Model Repositories (AMMoRe)

2018-05-17
2018-05-14
2018-05-23
S. Chen, J. Weimer, M. Rickels, A. Peleckis, I. Lee.  Submitted.  Physiology-Invariant Meal Detection for Type 1 Diabetes. Diabetes Technology and Therapeutics", year 201.

online first

2015-07-01
2023-03-31
Ankita, D, Khilar, Rashmita, Kumar, M. Naveen.  2022.  Accuracy Analysis for Predicting Human Behaviour Using Deep Belief Network in Comparison with Support Vector Machine Algorithm. 2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS). :1–5.
To detect human behaviour and measure accuracy of classification rate. Materials and Methods: A novel deep belief network with sample size 10 and support vector machine with sample size of 10. It was iterated at different times predicting the accuracy percentage of human behaviour. Results: Human behaviour detection utilizing novel deep belief network 87.9% accuracy compared with support vector machine 87.0% accuracy. Deep belief networks seem to perform essentially better compared to support vector machines \$(\textbackslashmathrmp=0.55)(\textbackslashtextPiˆ0.05)\$. The deep belief algorithm in computer vision appears to perform significantly better than the support vector machine algorithm. Conclusion: Within this human behaviour detection novel deep belief network has more precision than support vector machine.
2023-01-06
Chandrashekhar, RV, Visumathi, J, Anandaraj, A. PeterSoosai.  2022.  Advanced Lightweight Encryption Algorithm for Android (IoT) Devices. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1—5.
Security and Controls with Data privacy in Internet of Things (IoT) devices is not only a present and future technology that is projected to connect a multitude of devices, but it is also a critical survival factor for IoT to thrive. As the quantity of communications increases, massive amounts of data are expected to be generated, posing a threat to both physical device and data security. In the Internet of Things architecture, small and low-powered devices are widespread. Due to their complexity, traditional encryption methods and algorithms are computationally expensive, requiring numerous rounds to encrypt and decode, squandering the limited energy available on devices. A simpler cryptographic method, on the other hand, may compromise the intended confidentiality and integrity. This study examines two lightweight encryption algorithms for Android devices: AES and RSA. On the other hand, the traditional AES approach generates preset encryption keys that the sender and receiver share. As a result, the key may be obtained quickly. In this paper, we present an improved AES approach for generating dynamic keys.
2023-03-03
Sikandar, Hira Shahzadi, Sikander, Usman, Anjum, Adeel, Khan, Muazzam A..  2022.  An Adversarial Approach: Comparing Windows and Linux Security Hardness Using Mitre ATT&CK Framework for Offensive Security. 2022 IEEE 19th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). :022–027.
Operating systems are essential software components for any computer. The goal of computer system manu-facturers is to provide a safe operating system that can resist a range of assaults. APTs (Advanced Persistent Threats) are merely one kind of attack used by hackers to penetrate organisations (APT). Here, we will apply the MITRE ATT&CK approach to analyze the security of Windows and Linux. Using the results of a series of vulnerability tests conducted on Windows 7, 8, 10, and Windows Server 2012, as well as Linux 16.04, 18.04, and its most current version, we can establish which operating system offers the most protection against future assaults. In addition, we have shown adversarial reflection in response to threats. We used ATT &CK framework tools to launch attacks on both platforms.
ISSN: 1949-4106