Biblio
Presented at NSA SoS Quarterly Meeting, July 2016 and November 2016
Many technologies have been developed to provide effective opportunities to enhance the safety of roads and improve transportation system. In face of that, the concept of Vehicular Ad-Hoc Networks (VANET) was introduced to provide intelligent transportation systems. In this work, we propose the use of an OBD Bluetooth adapter and a smartphone to gather data from two cars, then we analyze the relationships between RPM and speed data to identify if this reflects the vehicle's current gear. As a result, we found a coefficient that indicates the behavior of each gear along the time in a trace. We conclude that these analysis, although in the beginning, suggests a way to determine the gear state. Therefore, many services can be developed using this information as, recommendation of gear shift time, eco-driving support, security patterns and entertainment applications.
This project shows a procedure-training simulator targeted at the operation and maintenance of overland distribution power lines. This simulator is focused on workplace safety and risk assessment of common daily operations such as fuse replacement and power cut activities. The training system is implemented using VR goggles (Oculus Rift) and a mixture of a real scenario matched perfectly with its Virtual Reality counterpart. The real scenario is composed of a real "basket" and a stick - both of the equipment is the actual ones used in daily training. Both, equipment are tracked by high precision infrared cameras system (OptiTrack) providing a high degree of immersion and realism. In addition to tracking the scenario, the user is completely tracked: heads, shoulders, arms and hands are tracked. This tracking allows a perfect simulation of the participant's movements in the Virtual World. This allows precise evaluation of movements as well as ergonomics. The virtual scenario was carefully designed to accurately reproduce in a coherent way all relevant spatial, architectonic and natural features typical of the urban environment, reflecting the variety of challenges that real cities might impose on the activity. The system consists of two modules: the first module being Instructor Interface, which will help create and control different challenging scenarios and follow the student's reactions and behavior; and the second module is the simulator itself, which will be presented to the student through VR goggles. The training session can also be viewed on a projected screen by other students, enabling learning through observation of mistakes and successes of their peers, such as a martial arts dojo. The simulator features various risk scenarios such as: different climates - sun, rain and wind; different lighting conditions - day, night and artificial; different types of electrical structures; transformer fire and explosion; short-circuit and electric arc; defective equipment; many obstacles - trees, cars, windows, swarm of bees, etc.
In this demo, we present an immersive virtual reality (VR) system which integrates multimodal interaction sensors (i.e., smartphone, Kinect v2, and Myo armband) and streaming technology to improve the VR experience. The integrated system solves the common problems in most VR systems: (1) the very limited playing area due to transmission cable between computer and display/interaction devices, and (2) non-intuitive way of controlling virtual objects. We use Unreal Engine 4 to develop an immersive VR game with 6 interactive levels to demonstrate the feasibility of our system. In the game, the user not only can freely walk within a large playing area surrounded by multiple Kinect sensors but also select the virtual objects to grab and throw with the Myo armband. The experiment shows that our idea is workable for VR experience.
The prevalent integration of highly intermittent renewable distributed energy resources (DER) into microgrids necessitates the deployment of a microgrid controller. In the absence of the main electric grid setting the network voltage and frequency, the microgrid power and energy management becomes more challenging, accentuating the need for a centralized microgrid controller that, through communication links, ensures smooth operation of the autonomous system. This extensive reliance on information and communication technologies (ICT) creates potential access points and vulnerabilities that may be exploited by cyber-attackers. This paper first presents a typical microgrid configuration operating in islanded mode; the microgrid elements, primary and secondary control functions for power, energy and load management are defined. The information transferred from the central controller to coordinate and dispatch the DERs is provided along with the deployable communication technologies and protocols. The vulnerabilities arising in such microgrids along with the cyber-attacks exploiting them are described. The impact of these attacks on the microgrid controller functions was shown to be dependent on the characteristics, location and target of the cyber-attack, as well as the microgrid configuration and control. A real-time hardware-in-the loop (HIL) testing platform, which emulates a microgrid featuring renewable DERs, an energy storage system (ESS), a diesel generator and controllable loads was used as the case study in order to demonstrate the impact of various cyber-attacks.
The Physical Web is a project announced by Google's Chrome team that essentially provides a framework to discover "smart" physical objects (e.g. vending machines, classroom, conference room, cafeteria etc.) and interact with specific, contextual content without having to resort to downloading a specific app. A common app such as the open source and freely available Physical Web app on the Google Play Store or the BKON Browser on the Apple App Store, can access nearby beacons. A current work-in-progress at the University of Maui College is developing a campus-wide prototype of beacon technology using Eddystone-URL and EID protocol from various beacon vendors.
MANET (Mobile ad-hoc network) is a wireless network. Several mobile nodes are present in MANET. It has various applications ranging from military to remote area communication. Several routing protocols are designed for routing of the packets in the network. AODV (ad hoc on demand vector) is one such protocol. Since, nodes are mobile in the network, security is a main concern. Blackhole attack is a network layer attack that tries to hamper the routing process. In this attack the data packets are dropped. The paper focuses on the analysis of AODV routing protocol under blackhole attack. First we have implemented blackhole attack in AODV and then analyzed the impact of blackhole attack on AODV under metrics like throughput, end to end delay and packet delivery fraction.
As the Smart Grid becomes highly interconnected, the power protection, control, and monitoring functions of the grid are increasingly relying on the communications infrastructure, which has seen rapid growth. At the same time concerns regarding cyber threats have attracted significant attention towards the security of power systems. A properly designed security attack against the power grid can cause catastrophic damages to equipment and create large scale power outages. The smart grid consists of critical IEDs, which are considered high priority targets for malicious security attacks. For this reason it is very important to design the IEDs from the beginning with cyber security in mind, starting with the selection of hardware and operating systems, so that all facets of security are addressed and the product is robust and can stand attacks. Fact is that the subject of cyber security is vast and it covers many aspects. This paper focuses mainly on one of these aspects, namely the aspect of IED firmware system testing from the security point of view. The paper discusses practical aspects of IED security testing, and introduces the reader to types of vulnerability exploitations on the IED communication stack and SCADA applications, practical aspects of security testing, the importance of early vulnerability detection and ways in which the security testing helps towards regulatory standards compliance, such as NERC-CIP. Finally, based on the results from the simulated attacks, the paper discusses the importance of good security practices in design and coding, so that the potential to introduce vulnerabilities is kept to a minimum. Designing with security in mind also includes good security practices, both in design and coding, and adequate policies for the software development process. Critical software development milestones must be established, such as design and test documentation review, code review, unit, integration and system testing.
Indexed data types allow us to specify and verify many interesting invariants about finite data in a general purpose programming language. In this paper we investigate the dual idea: indexed codata types, which allow us to describe data-dependencies about infinite data structures. Unlike finite data which is defined by constructors, we define infinite data by observations. Dual to pattern matching on indexed data which may refine the type indices, we define copattern matching on indexed codata where type indices guard observations we can make. Our key technical contributions are three-fold: first, we extend Levy's call-by-push value language with support for indexed (co)data and deep (co)pattern matching; second, we provide a clean foundation for dependent (co)pattern matching using equality constraints; third, we describe a small-step semantics using a continuation-based abstract machine, define coverage for indexed (co)patterns, and prove type safety. This is an important step towards building a foundation where (co)data type definitions and dependent types can coexist.
Emerging technologies such as the Internet of Things (IoT) heavily rely on hardware security for data and privacy protection. However, constantly increasing integration complexity requires automatic synthesis to maintain the pace of innovation. We introduce the first High-Level Synthesis (HLS) flow that produces a security enhanced hardware design to directly prevent Hardware Trojan Horse (HTH) injection by a malicious foundry. Through analysis of entropy loss and criticality decay, the presented algorithms implement highly efficient resource-targeted information dispersion to counter HTH insertion. The flow is evaluated on existing HLS benchmarks and a new IoT-specific benchmark and shows significant resource savings.
Bitcoin provides two incentives for miners: block rewards and transaction fees. The former accounts for the vast majority of miner revenues at the beginning of the system, but it is expected to transition to the latter as the block rewards dwindle. There has been an implicit belief that whether miners are paid by block rewards or transaction fees does not affect the security of the block chain. We show that this is not the case. Our key insight is that with only transaction fees, the variance of the block reward is very high due to the exponentially distributed block arrival time, and it becomes attractive to fork a "wealthy" block to "steal" the rewards therein. We show that this results in an equilibrium with undesirable properties for Bitcoin's security and performance, and even non-equilibria in some circumstances. We also revisit selfish mining and show that it can be made profitable for a miner with an arbitrarily low hash power share, and who is arbitrarily poorly connected within the network. Our results are derived from theoretical analysis and confirmed by a new Bitcoin mining simulator that may be of independent interest. We discuss the troubling implications of our results for Bitcoin's future security and draw lessons for the design of new cryptocurrencies.
The Internet of Things (IoT) is the latest Internet evolution that incorporates a diverse range of things such as sensors, actuators, and services deployed by different organizations and individuals to support a variety of applications. The information captured by IoT present an unprecedented opportunity to solve large-scale problems in those application domains to deliver services; example applications include precision agriculture, environment monitoring, smart health, smart manufacturing, and smart cities. Like all other Internet based services in the past, IoT-based services are also being developed and deployed without security consideration. By nature, IoT devices and services are vulnerable to malicious cyber threats as they cannot be given the same protection that is received by enterprise services within an enterprise perimeter. While IoT services will play an important role in our daily life resulting in improved productivity and quality of life, the trend has also “encouraged” cyber-exploitation and evolution and diversification of malicious cyber threats. Hence, there is a need for coordinated efforts from the research community to address resulting concerns, such as those presented in this special section. Several potential research topics are also identified in this special section.
Security threats may hinder the large scale adoption of the emerging Internet of Things (IoT) technologies. Besides efforts have already been made in the direction of data integrity preservation, confidentiality and privacy, several issues are still open. The existing solutions are mainly based on encryption techniques, but no attention is actually paid to key management. A clever key distribution system, along with a key replacement mechanism, are essentials for assuring a secure approach. In this paper, two popular key management systems, conceived for wireless sensor networks, are integrated in a real IoT middleware and compared in order to evaluate their performance in terms of overhead, delay and robustness towards malicious attacks.
Radio Frequency Identification (RFID) technology has been applied in many fields, such as tracking product through the supply chains, electronic passport (ePassport), proximity card, etc. Most companies will choose low-cost RFID tags. However, these RFID tags are almost no security mechanism so that criminals can easily clone these tags and get the user permissions. In this paper, we aim at more efficient detection proximity card be cloned and design a real-time intrusion detection system based on one tool of Complex Event Processing (Esper) in the RFID middleware. We will detect the cloned tags through training our system with the user's habits. When detected anomalous behavior which may clone tags have occurred, and then send the notification to user. We discuss the reliability of this intrusion detection system and describes in detail how to work.
While power grid systems benefit from utilizing communication network through networked control and protection, the addition of communication exposes the power system to new security vulnerabilities and potential attacks. To mitigate these attacks, such as denial of service, intrusion detection systems (IDS) are often employed. In this paper we investigate the relationship of IDS accuracy performance to the stability of power systems via its impact on communication latency. Several IDS machine learning algorithms are implemented on the NSL-KDD dataset to obtain accuracy performance, and a mathematical model for computing the latency when incorporating IDS detection information during network routing is introduced. Simulation results on the New England 39-bus power system suggest that during a cyber-physical attack, a practical IDS can achieve similar stability as an ideal IDS with perfect detection. In addition, false positive rate has been found to have a larger impact than false negative rate under the simulation conditions studied. These observations can contribute to the design requirements of future embedded IDS solutions for power systems.
Multilateration techniques have been proposed to verify the integrity of unprotected location claims in wireless localization systems. A common assumption is that the adversary is equipped with only a single device from which it transmits location spoofing signals. In this paper, we consider a more advanced model where the attacker is equipped with multiple devices and performs a geographically distributed coordinated attack on the multilateration system. The feasibility of a distributed multi-device attack is demonstrated experimentally with a self-developed attack implementation based on multiple COTS software-defined radio (SDR) devices. We launch an attack against the OpenSky Network, an air traffic surveillance system that implements a time-difference-of-arrival (TDoA) multi-lateration method for aircraft localization based on ADS-B signals. Our experiments show that the timing errors for distributed spoofed signals are indistinguishable from the multilateration errors of legitimate aircraft signals, indicating that the threat of multi-device spoofing attacks is real in this and other similar systems. In the second part of this work, we investigate physical-layer features that could be used to detect multi-device attacks. We show that the frequency offset and transient phase noise of the attacker's radio devices can be exploited to discriminate between a received signal that has been transmitted by a single (legitimate) transponder or by multiple (malicious) spoofing sources. Based on that, we devise a multi-device spoofing detection system that achieves zero false positives and a false negative rate below 1%.
The Internet of Things (IoT) presents itself as a promising set of key technologies to provide advanced smart applications. IoT has become a major trend lately and smart solutions can be found in a large variety of products. Since it provides a flexible and easy way to gather data from huge numbers of devices and exploit them ot provide new applications, it has become a central research area lately. However, due to the fact that IoT aims to interconnect millions of constrained devices that are monitoring the everyday life of people, acting upon physical objects around them, the security and privacy challenges are huge. Nevertheless, only lately the research focus has been on security and privacy solutions. Many solutions and IoT frameworks have only a minimum set of security, which is a basic access control. The EU FP7 project RERUM has a main focus on designing an IoT architecture based on the concepts of Security and Privacy by design. A central part of RERUM is the implementation of a middleware layer that provides extra functionalities for improved security and privacy. This work, presents the main elements of the RERUM middleware, which is based on the widely accepted OpenIoT middleware.
By connecting devices, people, vehicles and infrastructures everywhere in a city, governments and their partners can improve community wellbeing and other economic and financial aspects (e.g., cost and energy savings). Nonetheless, smart cities are complex ecosystems that comprise many different stakeholders (network operators, managed service providers, logistic centers...) who must work together to provide the best services and unlock the commercial potential of the IoT. This is one of the major challenges that faces today's smart city movement, and more generally the IoT as a whole. Indeed, while new smart connected objects hit the market every day, they mostly feed "vertical silos" (e.g., vertical apps, siloed apps...) that are closed to the rest of the IoT, thus hampering developers to produce new added value across multiple platforms. Within this context, the contribution of this paper is twofold: (i) present the EU vision and ongoing activities to overcome the problem of vertical silos; (ii) introduce recent IoT standards used as part of a recent Horizon 2020 IoT project to address this problem. The implementation of those standards for enhanced sporting event management in a smart city/government context (FIFA World Cup 2022) is developed, presented, and evaluated as a proof-of-concept.
This paper presents IPAS, an instruction duplication technique that protects scientific applications from silent data corruption (SDC) in their output. The motivation for IPAS is that, due to natural error masking, only a subset of SDC errors actually affects the output of scientific codes—we call these errors silent output corruption (SOC) errors. Thus applications require duplication only on code that, when affected by a fault, yields SOC. We use machine learning to learn code instructions that must be protected to avoid SOC, and, using a compiler, we protect only those vulnerable instructions by duplication, thus significantly reducing the overhead that is introduced by instruction duplication. In our experiments with five workloads, IPAS reduces the percentage of SOC by up to 90% with a slowdown that ranges between 1.04x and 1.35x, which corresponds to as much as 47% less slowdown than state-of-the-art instruction duplication techniques.
Background: The NASA datasets have previously been used extensively in studies of software defects. In 2013 Shepperd et al. presented an essential set of rules for removing erroneous data from the NASA datasets making this data more reliable to use. Objective: We have now found additional rules necessary for removing problematic data which were not identified by Shepperd et al. Results: In this paper, we demonstrate the level of erroneous data still present even after cleaning using Shepperd et al.'s rules and apply our new rules to remove this erroneous data. Conclusion: Even after systematic data cleaning of the NASA MDP datasets, we found new erroneous data. Data quality should always be explicitly considered by researchers before use.
To appear
Additive Manufacturing (AM) uses Cyber-Physical Systems (CPS) (e.g., 3D Printers) that are vulnerable to kinetic cyber-attacks. Kinetic cyber-attacks cause physical damage to the system from the cyber domain. In AM, kinetic cyber-attacks are realized by introducing flaws in the design of the 3D objects. These flaws may eventually compromise the structural integrity of the printed objects. In CPS, researchers have designed various attack detection method to detect the attacks on the integrity of the system. However, in AM, attack detection method is in its infancy. Moreover, analog emissions (such as acoustics, electromagnetic emissions, etc.) from the side-channels of AM have not been fully considered as a parameter for attack detection. To aid the security research in AM, this paper presents a novel attack detection method that is able to detect zero-day kinetic cyber-attacks on AM by identifying anomalous analog emissions which arise as an outcome of the attack. This is achieved by statistically estimating functions that map the relation between the analog emissions and the corresponding cyber domain data (such as G-code) to model the behavior of the system. Our method has been tested to detect potential zero-day kinetic cyber-attacks in fused deposition modeling based AM. These attacks can physically manifest to change various parameters of the 3D object, such as speed, dimension, and movement axis. Accuracy, defined as the capability of our method to detect the range of variations introduced to these parameters as a result of kinetic cyber-attacks, is 77.45%.