Biblio
Outsourcing a huge amount of local data to remote cloud servers that has been become a significant trend for industries. Leveraging the considerable cloud storage space, industries can also put forward the outsourced data to cloud computing. How to collect the data for computing without loss of privacy and confidentiality is one of the crucial security problems. Searchable encryption technique has been proposed to protect the confidentiality of the outsourced data and the privacy of the corresponding data query. This technique, however, only supporting search functionality, may not be fully applicable to real-world cloud computing scenario whereby secure data search, share as well as computation are needed. This work presents a novel encrypted cloud-based data share and search system without loss of user privacy and data confidentiality. The new system enables users to make conjunctive keyword query over encrypted data, but also allows encrypted data to be efficiently and multiply shared among different users without the need of the "download-decrypt-then-encrypt" mode. As of independent interest, our system provides secure keyword update, so that users can freely and securely update data's keyword field. It is worth mentioning that all the above functionalities do not incur any expansion of ciphertext size, namely, the size of ciphertext remains constant during being searched, shared and keyword-updated. The system is proven secure and meanwhile, the efficiency analysis shows its great potential in being used in large-scale database.
The microelectronics industry seeks screening tools that can be used to verify the origin of and track integrated circuits (ICs) throughout their lifecycle. Embedded circuits that measure process variation of an IC are well known. This paper adds to previous work using these circuits for studying manufacturer characteristics on final product ICs, particularly for the purpose of developing and verifying a signature for a microelectronics manufacturing facility (fab). We present the design, measurements and analysis of 159 silicon ICs which were built as a proof of concept for this purpose. 80 copies of our proof of concept IC were built at one fab, and 80 more copies were built across two lots at a second fab. Using these ICs, our prototype circuits allowed us to distinguish these two fabs with up to 98.7% accuracy and also distinguish the two lots from the second fab with up to 98.8% accuracy.
The microelectronics industry seeks screening tools that can be used to verify the origin of and track integrated circuits (ICs) throughout their lifecycle. Embedded circuits that measure process variation of an IC are well known. This paper adds to previous work using these circuits for studying manufacturer characteristics on final product ICs, particularly for the purpose of developing and verifying a signature for a microelectronics manufacturing facility (fab). We present the design, measurements and analysis of 159 silicon ICs which were built as a proof of concept for this purpose. 80 copies of our proof of concept IC were built at one fab, and 80 more copies were built across two lots at a second fab. Using these ICs, our prototype circuits allowed us to distinguish these two fabs with up to 98.7% accuracy and also distinguish the two lots from the second fab with up to 98.8% accuracy.
The output of 3D volume segmentation is crucial to a wide range of endeavors. Producing accurate segmentations often proves to be both inefficient and challenging, in part due to lack of imaging data quality (contrast and resolution), and because of ambiguity in the data that can only be resolved with higher-level knowledge of the structure and the context wherein it resides. Automatic and semi-automatic approaches are improving, but in many cases still fail or require substantial manual clean-up or intervention. Expert manual segmentation and review is therefore still the gold standard for many applications. Unfortunately, existing tools (both custom-made and commercial) are often designed based on the underlying algorithm, not the best method for expressing higher-level intention. Our goal is to analyze manual (or semi-automatic) segmentation to gain a better understanding of both low-level (perceptual tasks and actions) and high-level decision making. This can be used to produce segmentation tools that are more accurate, efficient, and easier to use. Questioning or observation alone is insufficient to capture this information, so we utilize a hybrid capture protocol that blends observation, surveys, and eye tracking. We then developed, and validated, data coding schemes capable of discerning low-level actions and overall task structures.
Recent findings have shown that network and system attacks in Software-Defined Networks (SDNs) have been caused by malicious network applications that misuse APIs in an SDN controller. Such attacks can both crash the controller and change the internal data structure in the controller, causing serious damage to the infrastructure of SDN-based networks. To address this critical security issue, we introduce a security framework called AEGIS to prevent controller APIs from being misused by malicious network applications. Through the run-time verification of API calls, AEGIS performs a fine-grained access control for important controller APIs that can be misused by malicious applications. The usage of API calls is verified in real time by sophisticated security access rules that are defined based on the relationships between applications and data in the SDN controller. We also present a prototypical implementation of AEGIS and demonstrate its effectiveness and efficiency by performing six different controller attacks including new attacks we have recently discovered.
While in business and private settings the disruptive impact of advanced information communication technology (ICT) have already been felt, the legal sector is now starting to face great disruptions due to such ICTs. Bits and pieces of innovations in the legal sector have been emerging for some time, affecting the performance of core functions and the legitimacy of public institutions. In this paper, we present our framework for enabling the smart government vision, particularly for the case of criminal justice systems, by unifying different isolated ICT-based solutions. Our framework, coined as Legal Logistics, supports the well-functioning of a legal system in order to streamline the innovations in these legal systems. The framework targets the exploitation of all relevant data generated by the ICT-based solutions. As will be illustrated for the Dutch criminal justice system, the framework may be used to integrate different ICT-based innovations and to gain insights about the well-functioning of the system. Furthermore, Legal Logistics can be regarded as a roadmap towards a smart and open justice.
Protecting the confidentiality of information manipulated by a computing system is one of the most important challenges facing today's cybersecurity community. A promising step toward conquering this challenge is to formally verify that the end-to-end behavior of the computing system really satisfies various information-flow policies. Unfortunately, because today's system software still consists of both C and assembly programs, the end-to-end verification necessarily requires that we not only prove the security properties of individual components, but also carefully preserve these properties through compilation and cross-language linking. In this paper, we present a novel methodology for formally verifying end-to-end security of a software system that consists of both C and assembly programs. We introduce a general definition of observation function that unifies the concepts of policy specification, state indistinguishability, and whole-execution behaviors. We show how to use different observation functions for different levels of abstraction, and how to link different security proofs across abstraction levels using a special kind of simulation that is guaranteed to preserve state indistinguishability. To demonstrate the effectiveness of our new methodology, we have successfully constructed an end-to-end security proof, fully formalized in the Coq proof assistant, of a nontrivial operating system kernel (running on an extended CompCert x86 assembly machine model). Some parts of the kernel are written in C and some are written in assembly; we verify all of the code, regardless of language.
Contemporary vehicles are getting equipped with an increasing number of Electronic Control Units (ECUs) and wireless connectivities. Although these have enhanced vehicle safety and efficiency, they are accompanied with new vulnerabilities. In this paper, we unveil a new important vulnerability applicable to several in-vehicle networks including Control Area Network (CAN), the de facto standard in-vehicle network protocol. Specifically, we propose a new type of Denial-of-Service (DoS), called the bus-off attack, which exploits the error-handling scheme of in-vehicle networks to disconnect or shut down good/uncompromised ECUs. This is an important attack that must be thwarted, since the attack, once an ECU is compromised, is easy to be mounted on safety-critical ECUs while its prevention is very difficult. In addition to the discovery of this new vulnerability, we analyze its feasibility using actual in-vehicle network traffic, and demonstrate the attack on a CAN bus prototype as well as on two real vehicles. Based on our analysis and experimental results, we also propose and evaluate a mechanism to detect and prevent the bus-off attack.
To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.
To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.
Software-defined networking (SDN) programs must simultaneously describe static forwarding behavior and dynamic updates in response to events. Event-driven updates are critical to get right, but difficult to implement correctly due to the high degree of concurrency in networks. Existing SDN platforms offer weak guarantees that can break application invariants, leading to problems such as dropped packets, degraded performance, security violations, etc. This paper introduces EVENT-DRIVEN CONSISTENT UPDATES that are guaranteed to preserve well-defined behaviors when transitioning between configurations in response to events. We propose NETWORK EVENT STRUCTURES (NESs) to model constraints on updates, such as which events can be enabled simultaneously and causal dependencies between events. We define an extension of the NetKAT language with mutable state, give semantics to stateful programs using NESs, and discuss provably-correct strategies for implementing NESs in SDNs. Finally, we evaluate our approach empirically, demonstrating that it gives well-defined consistency guarantees while avoiding expensive synchronization and packet buffering.
In this paper, we present E-VOX, an emotionally enhanced semantic ECA designed to work as a virtual assistant to search information from Wikipedia. It includes a cognitive-affective architecture that integrates an emotion model based on ALMA and the Soar cognitive architecture. This allows the ECA to take into account features needed for social interaction such as learning and emotion management. The architecture makes it possible to influence and modify the behavior of the agent depending on the feedback received from the user and other information from the environment, allowing the ECA to achieve a more realistic and believable interaction with the user. A completely functional prototype has been developed showing the feasibility of our approach.
Although computing students may enjoy when their instructors teach using analogies, it is unknown to what extent these analogies are useful for their learning. This study examines the value of analogies when used to introduce three introductory computing topics. The value of these analogies may be evident during the teaching process itself (short term), in subsequent exams (long term), or in students' ability to apply their understanding to related non-technical areas (transfer). Comparing results between an experimental group (analogy) and control group (no analogy), we find potential value for analogies in short term learning. However, no solid evidence was found to support analogies as valuable for students in the long term or for knowledge transfer. Specific demographic groups were examined and promising preliminary findings are presented.
We explicitly construct an extractor for two independent sources on n bits, each with polylogarithmic min-entropy. Our extractor outputs one bit and has polynomially small error. The best previous extractor, by Bourgain, required each source to have min-entropy .499n. A key ingredient in our construction is an explicit construction of a monotone, almost-balanced Boolean functions that are resilient to coalitions. In fact, our construction is stronger in that it gives an explicit extractor for a generalization of non-oblivious bit-fixing sources on n bits, where some unknown n-q bits are chosen almost polylogarithmic-wise independently, and the remaining q bits are chosen by an adversary as an arbitrary function of the n-q bits. The best previous construction, by Viola, achieved q quadratically smaller than our result. Our explicit two-source extractor directly implies improved constructions of a K-Ramsey graph over N vertices, improving bounds obtained by Barak et al. and matching independent work by Cohen.
The Internet of Things (IoT) is slowly, but steadily, changing the way we interact with our surrounding. Smart cities, smart environments, smart buildings are just a few macroscopic examples of how smart ecosystems are increasingly involved in our daily life, each one offering a different set of information. This information's decentralization and scattering can be exploited, optimizing mobile nodes on-demand information retrieval process. We propose an approach focused on defining competence domains in smart systems where the responsibility of providing a specific information to a mobile node is defined by spatial constraints. By exploiting the interplay and duality of Cloud Computing and Fog Computing we introduce an approach to exploit data spatial allocation in smart systems to optimize mobile nodes information retrieval.
As the oil and gas industry's ultimate goal is to uncover efficient and economic ways to produce oil and gas, well optimization studies are crucially important for reservoir engineers. Although this task has a major impact on reservoir productivity, it has been challenging for reservoir engineers to perform since it involves time-consuming flow simulations to search a large solution space for an optimal well plan. Our work aims to provide engineers a) an analytical method to perform static connectivity analysis as a proxy for flow simulation, b) an application to support well optimization using our method and c) an immersive experience that benefits engineers and supports their needs and preferences when performing the design and assessment of well trajectories. For the latter purpose, we explore our tool with three immersive environments: a CAVE with a tracked gamepad; a HMD with a tracked gamepad; and a HMD with a Leap Motion controller. This paper describes our application and its techniques in each of the different immersive environments. This paper also describes our findings from an exploratory evaluation conducted with six reservoir engineers, which provided insight into our application, and allowed us to discuss the potential benefits of immersion for the oil and gas domain.
The emphasis on exhaustive passive capturing of images using wearable cameras like Autographer, which is often known as lifelogging has brought into foreground the challenge of preserving privacy, in addition to presenting the vast amount of images in a meaningful way. In this paper, we present a user-study to understand the importance of an array of factors that are likely to influence the lifeloggers to share their lifelog images in their online circle. The findings are a step forward in the emerging area intersecting HCI, and privacy, to help in exploring design directions for privacy mediating techniques in lifelogging applications.
DeepDive is a system for extracting relational databases from dark data: the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data — scientific papers, Web classified ads, customer service notes, and so on — were instead in a relational database, it would give analysts access to a massive and highly-valuable new set of "big data" to exploit. DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference.
This paper proposes a novel deep two-view approach to learn features from both visible and thermal images and leverage the commonality among visible and thermal images for facial expression recognition from visible images. The thermal images are used as privileged information, which is required only during training to help visible images learn better features and classifier. Specifically, we first learn a deep model for visible images and thermal images respectively, and use the learned feature representations to train SVM classifiers for expression classification. We then jointly refine the deep models as well as the SVM classifiers for both thermal images and visible images by imposing the constraint that the outputs of the SVM classifiers from two views are similar. Therefore, the resulting representations and classifiers capture the inherent connections among visible facial image, infrared facial image and target expression labels, and hence improve the recognition performance for facial expression recognition from visible images during testing. Experimental results on the benchmark expression database demonstrate the effectiveness of our proposed method.