Biblio
Filters: First Letter Of Last Name is D [Clear All Filters]
Dynamic Multimodal Freight Routing using a Co-Simulation Optimization Approach. IEEE Transactions on Intelligent Transportation Systems.
.
Submitted.
Reachability problems for continuous chemical reaction networks. Natural Computing.
.
Submitted. To appear.
Routing of Multimodal Freight Transportation Using a Co-Simulation Optimization Approach. the 96th Annual Meeting of Transportation Research Board.
.
Submitted.
Safe Markov Chains for Density Control of ON/OFF Agents with Observed Transitions. {IEEE} Transactions in Automatic Control.
.
Submitted.
Stochastic Optimal Power Flow Based on Data- Driven Distributionally Robust Optimization. American Control Conference.
.
Submitted.
Survey of Security Advances in Smart Grid: A Data Driven Approach. IEEE Communications Surveys & Tutorials. 19:397–422.
.
Submitted.
The Toastboard: Ubiquitous Instrumentation and Automated Checking of Breadboarded Circuits. Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology.
.
Submitted.
Traffic regulation via controlled speed limit. SIAM Journal on Control and Optimization.
.
Submitted.
Exploring the Effects of Different Text Stimuli on Typing Behavior. International Conference on Cognitive Modeling.
.
In Press. In this work we explore how different cognitive processes af- fected typing patterns through a computer game we call The Typing Game. By manipulating the players’ familiarity with the words in our game through their similarity to dictionary words, and by allowing some players to replay rounds, we found that typing speed improves with familiarity with words, and also with practice, but that these are independent of the number of mistakes that are made when typing. We also found that users who had the opportunity to replay rounds exhibited different typing patterns even before replaying the rounds.
Access Distribution to the Evaluation System Based on Fuzzy Logic. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). :564—567.
.
2022. In order to control users’ access to the information system, it is necessary to develop a security system that can work in real time and easily reconfigure. This problem can be solved using a fuzzy logic. In this paper the authors propose a fuzzy distribution system for access to the student assessment system, which takes into account the level of user access, identifier and the risk of attack during the request. This approach allows process fuzzy or incomplete information about the user and implement a sufficient level of confidential information protection.
Achieving Privacy-preserving Data Sharing for Dual Clouds. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :139–146.
.
2022. With the advent of the era of Internet of Things (IoT), the increasing data volume leads to storage outsourcing as a new trend for enterprises and individuals. However, data breaches frequently occur, bringing significant challenges to the privacy protection of the outsourced data management system. There is an urgent need for efficient and secure data sharing schemes for the outsourced data management infrastructure, such as the cloud. Therefore, this paper designs a dual-server-based data sharing scheme with data privacy and high efficiency for the cloud, enabling the internal members to exchange their data efficiently and securely. Dual servers guarantee that none of the servers can get complete data independently by adopting secure two-party computation. In our proposed scheme, if the data is destroyed when sending it to the user, the data will not be restored. To prevent the malicious deletion, the data owner adds a random number to verify the identity during the uploading procedure. To ensure data security, the data is transmitted in ciphertext throughout the process by using searchable encryption. Finally, the black-box leakage analysis and theoretical performance evaluation demonstrate that our proposed data sharing scheme provides solid security and high efficiency in practice.
Active Queue Management on the Tofino programmable switch: The (Dual)PI2 case. ICC 2022 - IEEE International Conference on Communications. :1685—1691.
.
2022. The excess buffering of packets in network elements, also referred to as bufferbloat, results in high latency. Considering the requirements of traffic generated by video conferencing systems like Zoom, cloud rendered gaming platforms like Google Stadia, or even video streaming services such as Netflix, Amazon Prime and YouTube, timeliness of such traffic is important. Ensuring low latency to IP flows with a high throughput calls for the application of Active Queue Management (AQM) schemes. This introduces yet another problem as the co-existence of scalable and classic congestion controls leads to the starvation of classic TCP flows. Technologies such as Low Latency Low Loss Scalable Throughput (L4S) and the corresponding dual queue coupled AQM, DualPI2, provide a robust solution to these problems. However, their deployment on hardware targets such as programmable switches is quite challenging due to the complexity of algorithms and architectural constraints of switching ASICs. In this study, we provide proof of concept implementations of two AQMs that enable the co-existence of scalable and traditional TCP traffic, namely DualPI2 and the preceding single-queue PI2 AQM, on an Intel Tofino switching ASIC. Given the fixed operation of the switch’s traffic manager, we investigate to what extent it is possible to implement a fully RFC-compliant version of the two AQMs on the Tofino ASIC. The study shows that an appropriate split between control and data plane operations is required while we also exploit fixed functionality of the traffic manager to support such solutions.
Advanced Backstepping Control: Application on a Foldable Quadrotor. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD). :609–615.
.
2022. This paper deals with the implementation of robust control, based on the finite time Lyapunov stability theory, to solve the trajectory tracking problem of an unconventional quadrotor with rotating arms (also known as foldable drone). First, the model of this Unmanned Aerial Vehicle (UAV) taking into consideration the variation of the inertia, the Center of Gravity (CoG) and the control matrix is presented. The theoretical foundations of backstepping control enhanced by a Super-Twisting (ST) algorithm are then discussed. Numerical simulations are performed to demonstrate the effectiveness of the proposed control strategy. Finally, a qualitative and quantitative comparative study is made between the proposed controller and the classical backstepping controller. Overall, the results obtained show that the proposed control approach provides better performance in terms of accuracy and resilience.
ISSN: 2474-0446
Adversarial AutoEncoder and Generative Adversarial Networks for Semi-Supervised Learning Intrusion Detection System. 2022 RIVF International Conference on Computing and Communication Technologies (RIVF). :584–589.
.
2022. As one of the defensive solutions against cyberattacks, an Intrusion Detection System (IDS) plays an important role in observing the network state and alerting suspicious actions that can break down the system. There are many attempts of adopting Machine Learning (ML) in IDS to achieve high performance in intrusion detection. However, all of them necessitate a large amount of labeled data. In addition, labeling attack data is a time-consuming and expensive human-labor operation, it makes existing ML methods difficult to deploy in a new system or yields lower results due to a lack of labels on pre-trained data. To address these issues, we propose a semi-supervised IDS model that leverages Generative Adversarial Networks (GANs) and Adversarial AutoEncoder (AAE), called a semi-supervised adversarial autoencoder (SAAE). Our SAAE experimental results on two public datasets for benchmarking ML-based IDS, including NF-CSE-CIC-IDS2018 and NF-UNSW-NB15, demonstrate the effectiveness of AAE and GAN in case of using only a small number of labeled data. In particular, our approach outperforms other ML methods with the highest detection rates in spite of the scarcity of labeled data for model training, even with only 1% labeled data.
ISSN: 2162-786X
Analysis and Research of Generative Adversarial Network in Anomaly Detection. 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP). :1700–1703.
.
2022. In recent years, generative adversarial networks (GAN) have become a research hotspot in the field of deep learning. Researchers apply them to the field of anomaly detection and are committed to effectively and accurately identifying abnormal images in practical applications. In anomaly detection, traditional supervised learning algorithms have limitations in training with a large number of known labeled samples. Therefore, the anomaly detection model of unsupervised learning GAN is the research object for discussion and research. Firstly, the basic principles of GAN are introduced. Secondly, several typical GAN-based anomaly detection models are sorted out in detail. Then by comparing the similarities and differences of each derivative model, discuss and summarize their respective advantages, limitations and application scenarios. Finally, the problems and challenges faced by GAN in anomaly detection are discussed, and future research directions are prospected.
Analysis of a Joint Data Security Architecture Integrating Artificial Intelligence and Cloud Computing in the Era of Big Data. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :988–991.
.
2022. This article analyzes the analysis of the joint data security architecture that integrates artificial intelligence and cloud computing in the era of big data. The article discusses and analyzes the integrated applications of big data, artificial intelligence and cloud computing. As an important part of big data security protection, joint data security Protecting the technical architecture is not only related to the security of joint data in the big data era, but also has an important impact on the overall development of the data era. Based on this, the thesis takes the big data security and joint data security protection technical architecture as the research content, and through a simple explanation of big data security, it then conducts detailed research on the big data security and joint data security protection technical architecture from five aspects and thinking.
Analysis of Twitter Spam Detection Using Machine Learning Approach. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :764–769.
.
2022. Now a days there are many online social networks (OSN) which are very popular among Internet users and use this platform for finding new connections, sharing their activities and thoughts. Twitter is such social media platforms which is very popular among this users. Survey says, it has more than 310 million monthly users who are very active and post around 500+ million tweets in a day and this attracts, the spammer or cyber-criminal to misuse this platform for their malicious benefits. Product advertisement, phishing true users, pornography propagation, stealing the trending news, sharing malicious link to get the victims for making money are the common example of the activities of spammers. In Aug-2014, Twitter made public that 8.5% of its active Twitter users (monthly) that is approx. 23+ million users, who have automatically contacted their servers for regular updates. Thus for a spam free environment in twitter, it is greatly required to detect and filter these spammer from the legitimate users. Here in our research paper, effectiveness & features of twitter spam detection, various methods are summarized with their benefits and limitations are presented. [1]
Analysis on the Growth of Artificial Intelligence for Application Security in Internet of Things. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :6—12.
.
2022. Artificial intelligence is a subfield of computer science that refers to the intelligence displayed by machines or software. The research has influenced the rapid development of smart devices that have a significant impact on our daily lives. Science, engineering, business, and medicine have all improved their prediction powers in order to make our lives easier in our daily tasks. The quality and efficiency of regions that use artificial intelligence has improved, as shown in this study. It successfully handles data organisation and environment difficulties, allowing for the development of a more solid and rigorous model. The pace of life is quickening in the digital age, and the PC Internet falls well short of meeting people’s needs. Users want to be able to get convenient network information services at any time and from any location
Application of Random Forest Classifier for Prevention and Detection of Distributed Denial of Service Attacks. 2022 OITS International Conference on Information Technology (OCIT). :380–384.
.
2022. A classification issue in machine learning is the issue of spotting Distributed Denial of Service (DDos) attacks. A Denial of Service (DoS) assault is essentially a deliberate attack launched from a single source with the implied intent of rendering the target's application unavailable. Attackers typically aims to consume all available network bandwidth in order to accomplish this, which inhibits authorized users from accessing system resources and denies them access. DDoS assaults, in contrast to DoS attacks, include several sources being used by the attacker to launch an attack. At the network, transportation, presentation, and application layers of a 7-layer OSI architecture, DDoS attacks are most frequently observed. With the help of the most well-known standard dataset and multiple regression analysis, we have created a machine learning model in this work that can predict DDoS and bot assaults based on traffic.
An Approach Towards Data Security Based on DCT and Chaotic Map. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON). :1–5.
.
2022. Currently, the rapid development of digital communication and multimedia has made security an increasingly prominent issue of communicating, storing, and transmitting digital data such as images, audio, and video. Encryption techniques such as chaotic map based encryption can ensure high levels of security of data and have been used in many fields including medical science, military, and geographic satellite imagery. As a result, ensuring image data confidentiality, integrity, security, privacy, and authenticity while transferring and storing images over an unsecured network like the internet has become a high concern. There have been many encryption technologies proposed in recent years. This paper begins with a summary of cryptography and image encryption basics, followed by a discussion of different kinds of chaotic image encryption techniques and a literature review for each form of encryption. Finally, by examining the behaviour of numerous existing chaotic based image encryption algorithms, this paper hopes to build new chaotic based image encryption strategies in the future.
Automation of the Information Collection Process by Osint Methods for Penetration Testing During Information Security Audit. 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :242—246.
.
2022. The purpose of this article is to consider one of the options for automating the process of collecting information from open sources when conducting penetration testing in an organization's information security audit using the capabilities of the Python programming language. Possible primary vectors for collecting information about the organization, personnel, software, and hardware are shown. The basic principles of operation of the software product are presented in a visual form, which allows automated analysis of information from open sources about the object under study.
Behaviour Analysis of Open-Source Firewalls Under Security Crisis. 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). :105—109.
.
2022. Nowadays, in this COVID era, work from home is quietly more preferred than work from the office. Due to this, the need for a firewall has been increased day by day. Every organization uses the firewall to secure their network and create VPN servers to allow their employees to work from home. Due to this, the security of the firewall plays a crucial role. In this paper, we have compared the two most popular open-source firewalls named pfSense and OPNSense. We have examined the security they provide by default without any other attachment. To do this, we performed four different attacks on the firewalls and compared the results. As a result, we have observed that both provide the same security still pfSense has a slight edge when an attacker tries to perform a Brute force attack over OPNSense.
Blockchain Technology in Digital Certificate Authentication. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–5.
.
2022. The paper presents the concept of the association of digital signature technology with the currently trending blockchain technology for providing a mechanism which would detect any dubious data and store it in a place where it could be secure for the long term. The features of blockchain technology perfectly complement the requirements of the educational fields of today's world. The growing trend of digital certificate usage makes it easier for a dubious certificate to existing, among the others hampering the integrity of professional life. Association of hash key and a time stamp with a digital document would ensure that a third person does not corrupt the following certificate. The blockchain ensures that after verification, nobody else misuses the data uploaded and keeps it safe for a long time. The information from the blockchain can be retrieved at any moment by the user using the unique id associated with every user.
Blockchain-based identity dicovery between heterogenous identity management systems. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :131—137.
.
2022. Identity Management Systems (IdMS) have seemingly evolved in recent years, both in terms of modelling approach and in terms of used technology. The early centralized, later federated and user-centric Identity Management (IdM) was finally replaced by Self-Sovereign Identity (SSI). Solutions based on Distributed Ledger Technology (DLT) appeared, with prominent examples of uPort, Sovrin or ShoCard. In effect, users got more freedom in creation and management of their identities. IdM systems became more distributed, too. However, in the area of interoperability, dynamic and ad-hoc identity management there has been almost no significant progress. Quest for the best IdM system which will be used by all entities and organizations is deemed to fail. The environment of IdM systems is, and in the near future will still be, heterogenous. Therefore a person will have to manage her or his identities in multiple IdM systems. In this article authors argument that future-proof IdM systems should be able to interoperate with each other dynamically, i.e. be able to discover existence of different identities of a person across multiple IdM systems, dynamically build trust relations and be able to translate identity assertions and claims across various IdM domains. Finally, authors introduce identity relationship model and corresponding identity discovery algorithm, propose IdMS-agnostic identity discovery service design and its implementation with use of Ethereum and Smart Contracts.