Biblio

Found 2705 results

Filters: First Letter Of Last Name is G  [Clear All Filters]
2018-06-07
Jha, Sagar, Behrens, Jonathan, Gkountouvas, Theo, Milano, Matthew, Song, Weijia, Tremel, Edward, Zink, Sydney, Birman, Ken, van Renesse, Robbert.  2017.  Building Smart Memories and High-speed Cloud Services for the Internet of Things with Derecho. Proceedings of the 2017 Symposium on Cloud Computing. :632–632.
The coming generation of Internet-of-Things (IoT) applications will process massive amounts of incoming data while supporting data mining and online learning. In cases with demanding real-time requirements, such systems behave as smart memories: a high-bandwidth service that captures sensor input, processes it using machine-learning tools, replicates and stores "interesting" data (discarding uninteresting content), updates knowledge models, and triggers urgently-needed responses. Derecho is a high-throughput library for building smart memories and similar services. At its core Derecho implements atomic multicast (Vertical Paxos) and state machine replication (the classic durable Paxos). Derecho's replicated\textbackslashtextlessT\textbackslashtextgreater template defines a replicated type; the corresponding objects are associated with subgroups, which can be sharded into key-value structures. The persistent\textbackslashtextlessT\textbackslashtextgreater and volatile\textbackslashtextlessT\textbackslashtextgreater storage templates implement version vectors with optional NVM persistence. These support time-indexed access, offering lock-free snapshot isolation that blends temporal precision and causal consistency. Derecho automates application management, supporting multigroup structures and providing consistent knowledge of the current membership mapping. A query can access data from many shards or subgroups, and consistency is guaranteed without any form of distributed locking. Whereas many systems run consensus on the critical path, Derecho requires consensus only when updating membership. By leveraging an RDMA data plane and NVM storage, and adopting a novel receiver-side batching technique, Derecho can saturate a 12.5GB RDMA network, sending millions of events per second in each subgroup or shard. In a single subgroup with 2–16 members, through-put peaks at 16 GB/s for large (100MB or more) objects. While key-value subgroups would typically use 2 or 3-member shards, unsharded subgroups could be large. In tests with a 128-member group, Derecho's multicast and Paxos protocols were just 3–5x slower than for a small group, depending on the traffic pattern. With network contention, slow members, or overlapping groups that generate concurrent traffic, Derecho's protocols remain stable and adapt to the available bandwidth.
2018-05-30
Gilani, Zafar, Kochmar, Ekaterina, Crowcroft, Jon.  2017.  Classification of Twitter Accounts into Automated Agents and Human Users. Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017. :489–496.
Online social networks (OSNs) have seen a remarkable rise in the presence of surreptitious automated accounts. Massive human user-base and business-supportive operating model of social networks (such as Twitter) facilitates the creation of automated agents. In this paper we outline a systematic methodology and train a classifier to categorise Twitter accounts into 'automated' and 'human' users. To improve classification accuracy we employ a set of novel steps. First, we divide the dataset into four popularity bands to compensate for differences in types of accounts. Second, we create a large ground truth dataset using human annotations and extract relevant features from raw tweets. To judge accuracy of the procedure we calculate agreement among human annotators as well as with a bot detection research tool. We then apply a Random Forests classifier that achieves an accuracy close to human agreement. Finally, as a concluding step we perform tests to measure the efficacy of our results.
2018-02-15
Lekies, Sebastian, Kotowicz, Krzysztof, Groß, Samuel, Vela Nava, Eduardo A., Johns, Martin.  2017.  Code-Reuse Attacks for the Web: Breaking Cross-Site Scripting Mitigations via Script Gadgets. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1709–1723.
Cross-Site Scripting (XSS) is an unremitting problem for the Web. Since its initial public documentation in 2000 until now, XSS has been continuously on top of the vulnerability statistics. Even though there has been a considerable amount of research and developer education to address XSS on the source code level, the overall number of discovered XSS problems remains high. Because of this, various approaches to mitigate XSS have been proposed as a second line of defense, with HTML sanitizers, Web Application Firewalls, browser-based XSS filters, and the Content Security Policy being some prominent examples. Most of these mechanisms focus on script tags and event handlers, either by removing them from user-provided content or by preventing their script code from executing. In this paper, we demonstrate that this approach is no longer sufficient for modern applications: We describe a novel Web attack that can circumvent all of theses currently existing XSS mitigation techniques. In this attack, the attacker abuses so called script gadgets (legitimate JavaScript fragments within an application's legitimate code base) to execute JavaScript. In most cases, these gadgets utilize DOM selectors to interact with elements in the Web document. Through an initial injection point, the attacker can inject benign-looking HTML elements which are ignored by these mitigation techniques but match the selector of the gadget. This way, the attacker can hijack the input of a gadget and cause processing of his input, which in turn leads to code execution of attacker-controlled values. We demonstrate that these gadgets are omnipresent in almost all modern JavaScript frameworks and present an empirical study showing the prevalence of script gadgets in productive code. As a result, we assume most mitigation techniques in web applications written today can be bypassed.
2018-12-10
Gaoding, Ningcheng, Bousquet, Jean-François.  2017.  A Compact Magneto-Inductive Coil Antenna Design for Underwater Communications. Proceedings of the International Conference on Underwater Networks & Systems. :19:1–19:5.
Magnetic induction (MI) has shown a great potential for underwater communications due to its immunity to acoustic noise and low latency. However, the transmission distance of MI is limited since the magnetic field attenuates very fast in the near field. In this work, a magneto inductive antenna design is studied to achieve two modes of operation: 1) a static quasi omni-directional magnetic coupling; 2) a dynamic rotation of magnetic coupling. A design procedure is described to define the strength of the magnetic field, bandwidth (BW) and the path loss (PL) of the underwater communication link. Both modes are simulated and the corresponding antenna configurations are described. The proposed antenna has three coils separated between each other by 120 degrees. The coils have a radius of 5 cm and a length of 8 cm. The simulation results illustrate how this design can provide an omni-directional magnetic coupling and a more directional performance in the rotation mode. In the rotation mode, simulations also confirmed that the magnetic field can be controllable by changing the phases of input currents.
2018-08-23
Vora, Keval, Tian, Chen, Gupta, Rajiv, Hu, Ziang.  2017.  CoRAL: Confined Recovery in Distributed Asynchronous Graph Processing. Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems. :223–236.
Existing distributed asynchronous graph processing systems employ checkpointing to capture globally consistent snapshots and rollback all machines to most recent checkpoint to recover from machine failures. In this paper we argue that recovery in distributed asynchronous graph processing does not require the entire execution state to be rolled back to a globally consistent state due to the relaxed asynchronous execution semantics. We define the properties required in the recovered state for it to be usable for correct asynchronous processing and develop CoRAL, a lightweight checkpointing and recovery algorithm. First, this algorithm carries out confined recovery that only rolls back graph execution states of the failed machines to affect recovery. Second, it relies upon lightweight checkpoints that capture locally consistent snapshots with a reduced peak network bandwidth requirement. Our experiments using real-world graphs show that our technique recovers from failures and finishes processing 1.5x to 3.2x faster compared to the traditional asynchronous checkpointing and recovery mechanism when failures impact 1 to 6 machines of a 16 machine cluster. Moreover, capturing locally consistent snapshots significantly reduces intermittent high peak bandwidth usage required to save the snapshots – the average reduction in 99th percentile bandwidth ranges from 22% to 51% while 1 to 6 snapshot replicas are being maintained.
2018-01-10
Shen, Fumin, Gao, Xin, Liu, Li, Yang, Yang, Shen, Heng Tao.  2017.  Deep Asymmetric Pairwise Hashing. Proceedings of the 2017 ACM on Multimedia Conference. :1522–1530.
Recently, deep neural networks based hashing methods have greatly improved the multimedia retrieval performance by simultaneously learning feature representations and binary hash functions. Inspired by the latest advance in the asymmetric hashing scheme, in this work, we propose a novel Deep Asymmetric Pairwise Hashing approach (DAPH) for supervised hashing. The core idea is that two deep convolutional models are jointly trained such that their output codes for a pair of images can well reveal the similarity indicated by their semantic labels. A pairwise loss is elaborately designed to preserve the pairwise similarities between images as well as incorporating the independence and balance hash code learning criteria. By taking advantage of the flexibility of asymmetric hash functions, we devise an efficient alternating algorithm to optimize the asymmetric deep hash functions and high-quality binary code jointly. Experiments on three image benchmarks show that DAPH achieves the state-of-the-art performance on large-scale image retrieval.
2018-11-19
Lugo, Anthony Erb, Garcia, Dennis, Hemberg, Erik, O'Reilly, Una-May.  2017.  Developing Proactive Defenses for Computer Networks with Coevolutionary Genetic Algorithms. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :273–274.
Our cybersecurity tool, RIVALS, develops adaptive network defense strategies by modeling adversarial network attack and defense behavior in peer-to-peer networks via coevolutionary algorithms. Currently RIVALS DOS attacks are modestly modeled by the selection of a node that is completely disabled for a resource-limited duration. Defenders have three different network routing protocols. Attack or mission completion and resource cost metrics serve as attacker and defender objectives. This work also includes a description of RIVALS' suite of coevolutionary algorithms that explore archiving as a means of maintaining progressive exploration and support the evaluation of different solution concepts. To compare and contrast the effectiveness of each algorithm, we execute simulations on 3 different network topologies. Our experiments show that it is possible to forgo the assurance of monotonically increasing results and still retain high quality results.
2018-09-05
Gardiyawasam Pussewalage, Harsha S., Oleshchuk, Vladimir A..  2017.  A Distributed Multi-Authority Attribute Based Encryption Scheme for Secure Sharing of Personal Health Records. Proceedings of the 22Nd ACM on Symposium on Access Control Models and Technologies. :255–262.
Personal health records (PHR) are an emerging health information exchange model, which facilitates PHR owners to efficiently manage their health data. Typically, PHRs are outsourced and stored in third-party cloud platforms. Although, outsourcing private health data to third-party platforms is an appealing solution for PHR owners, it may lead to significant privacy concerns, because there is a higher risk of leaking private data to unauthorized parties. As a way of ensuring PHR owners' control of their outsourced PHR data, attribute based encryption (ABE) mechanisms have been considered due to the fact that such schemes facilitate a mechanism of sharing encrypted data among a set of intended recipients. However, such existing PHR solutions suffer from inflexibility and scalability issues due to the limitations associated with the adopted ABE mechanisms. To address these issues, we propose a distributed multi-authority ABE scheme and thereby we show how a patient-centric, attribute based PHR sharing scheme which can provide flexible access for both professional users such as doctors as well as personal users such as family and friends is realized. We have shown that the proposed scheme supports on-demand user revocation as well as secure under standard security assumptions. In addition, the simulation results provide evidence for the fact that our scheme can function efficiently in practice. Furthermore, we have shown that the proposed scheme can cater the access requirements associated with distributed multiuser PHR sharing environments as well as more realistic and scalable compared with similar existing PHR sharing schemes.
Murvay, Pal-Stefan, Groza, Bogdan.  2017.  DoS Attacks on Controller Area Networks by Fault Injections from the Software Layer. Proceedings of the 12th International Conference on Availability, Reliability and Security. :71:1–71:10.
The Controller Area Network (CAN) is still the most widely employed bus in the automotive sector. Its lack of security mechanisms led to a high number of attacks and consequently several security countermeasures were proposed, i.e., authentication protocols or intrusion detection mechanisms. We discuss vulnerabilities of the CAN data link layer that can be triggered from the application level with the use of an off the shelf CAN transceiver. Namely, due to the wired-AND design of the CAN bus, dominant bits will always overwrite recessive ones, a functionality normally used to assure priority for frames with low value identifiers. We exploit this characteristic and show Denial of Service attacks both on senders and receivers based on bit injections by using bit banging to maliciously control the CAN transceiver. We demonstrate the effects and limitations of such attacks through experimental analysis and discuss possible countermeasures. In particular, these attacks may have high impact on centralized authentication mechanisms that were frequently proposed in the literature since these attacks can place monitoring nodes in a bus-off state for certain periods of time.
2018-06-11
Tacliad, Francisco, Nguyen, Thuy D., Gondree, Mark.  2017.  DoS Exploitation of Allen-Bradley's Legacy Protocol Through Fuzz Testing. Proceedings of the 3rd Annual Industrial Control System Security Workshop. :24–31.
EtherNet/IP is a TCP/IP-based industrial protocol commonly used in industrial control systems (ICS). TCP/IP connectivity to the outside world has enabled ICS operators to implement more agile practices, but it also has exposed these cyber-physical systems to cyber attacks. Using a custom Scapy-based fuzzer to test for implementation flaws in the EtherNet/IP software of commercial programmable logic controllers (PLC), we uncover a previously unreported denial-of-service (DoS) vulnerability in the Ethernet/IP implementation of the Rockwell Automation/Allen-Bradley MicroLogix 1100 PLC that, if exploited, can cause the PLC to fault. ICS-CERT recently announces this vulnerability in the security advisory ICSA-17-138-03. This paper describes this vulnerability, the development of an EtherNet/IP fuzzer, and an approach to remotely monitor for faults generated when fuzzing.
2017-12-20
Dutta, R. G., Guo, Xiaolong, Zhang, Teng, Kwiat, K., Kamhoua, C., Njilla, L., Jin, Y..  2017.  Estimation of safe sensor measurements of autonomous system under attack. 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). :1–6.
The introduction of automation in cyber-physical systems (CPS) has raised major safety and security concerns. One attack vector is the sensing unit whose measurements can be manipulated by an adversary through attacks such as denial of service and delay injection. To secure an autonomous CPS from such attacks, we use a challenge response authentication (CRA) technique for detection of attack in active sensors data and estimate safe measurements using the recursive least square algorithm. For demonstrating effectiveness of our proposed approach, a car-follower model is considered where the follower vehicle's radar sensor measurements are manipulated in an attempt to cause a collision.
2018-09-05
Haken, Gareth, Markantonakis, Konstantinos, Gurulian, Iakovos, Shepherd, Carlton, Akram, Raja Naeem.  2017.  Evaluation of Apple iDevice Sensors As a Potential Relay Attack Countermeasure for Apple Pay. Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security. :21–32.
Traditional countermeasures to relay attacks are difficult to implement on mobile devices due to hardware limitations. Establishing proximity of a payment device and terminal is the central notion of most relay attack countermeasures, and mobile devices offer new and exciting possibilities in this area of research. One such possibility is the use of on-board sensors to measure ambient data at both the payment device and terminal, with a comparison made to ascertain whether the device and terminal are in close proximity. This project focuses on the iPhone, specifically the iPhone 6S, and the potential use of its sensors to both establish proximity to a payment terminal and protect Apple Pay against relay attacks. The iPhone contains 12 sensors in total, but constraints introduced by payment schemes mean only 5 were deemed suitable to be used for this study. A series of mock transactions and relay attack attempts are enacted using an iOS application written specifically for this study. Sensor data is recorded, and then analysed to ascertain its accuracy and suitability for both proximity detection and relay attack countermeasures.
2018-04-04
Wei, Li, Tang, Yuxin, Cao, Yuching, Wang, Zhaohui, Gerla, Mario.  2017.  Exploring Simulation of Software-Defined Underwater Wireless Networks. Proceedings of the International Conference on Underwater Networks & Systems. :21:1–21:5.
Multi-modal communication methods have been proposed for underwater wireless networks (UWNs) to tackle the challenging physical characteristics of underwater wireless channels. These include the use of acoustic and optic technology for range-dependent transmissions. Software-defined networking (SDN) is an appealing choice for managing these networks with multi-modal communication capabilities, allowing for increased adaptability in the UWN design. In this work, we develop a simulation platform for software-defined underwater wireless networks (SDUWNs). Similarto OpenNet, this platform integrates Mininet with ns-3 via TapBridge modules. The multi-modal communication is implemented by equipping each ns-3 node with multiple net devices. Multiple channel modules connecting corresponding net devices are configured to reflect the channel characteristics. The proposed simulation platform is validated in a case study for oceanographic data collection.
2018-01-10
Almeida, José Bacelar, Barbosa, Manuel, Barthe, Gilles, Dupressoir, François, Grégoire, Benjamin, Laporte, Vincent, Pereira, Vitor.  2017.  A Fast and Verified Software Stack for Secure Function Evaluation. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1989–2006.
We present a high-assurance software stack for secure function evaluation (SFE). Our stack consists of three components: i. a verified compiler (CircGen) that translates C programs into Boolean circuits; ii. a verified implementation of Yao's SFE protocol based on garbled circuits and oblivious transfer; and iii. transparent application integration and communications via FRESCO, an open-source framework for secure multiparty computation (MPC). CircGen is a general purpose tool that builds on CompCert, a verified optimizing compiler for C. It can be used in arbitrary Boolean circuit-based cryptography deployments. The security of our SFE protocol implementation is formally verified using EasyCrypt, a tool-assisted framework for building high-confidence cryptographic proofs, and it leverages a new formalization of garbled circuits based on the framework of Bellare, Hoang, and Rogaway (CCS 2012). We conduct a practical evaluation of our approach, and conclude that it is competitive with state-of-the-art (unverified) approaches. Our work provides concrete evidence of the feasibility of building efficient, verified, implementations of higher-level cryptographic systems. All our development is publicly available.
2018-09-28
Prabhakar, Pavithra, García Soto, Miriam.  2017.  Formal Synthesis of Stabilizing Controllers for Switched Systems. Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control. :111–120.
In this paper, we describe an abstraction-based method for synthesizing a state-based switching control for stabilizing a family of dynamical systems. Given a set of dynamical systems and a set of polyhedral switching surfaces, the algorithm synthesizes a strategy that assigns to every surface the linear dynamics to switch to at the surface. Our algorithm constructs a finite game graph that consists of the switching surfaces as the existential nodes and the choices of the dynamics as the universal nodes. In addition, the edges capture quantitative information about the evolution of the distance of the state from the equilibrium point along the executions. A switching strategy for the family of dynamical systems is extracted by finding a strategy on the game graph which results in plays having a bounded weight. Such a strategy is obtained by reducing the problem to the strategy synthesis for an energy game, which is a well-studied problem in the literature. We have implemented our algorithm for polyhedral inclusion dynamics and linear dynamics. We illustrate our algorithm on examples from these two classes of systems.
2018-09-05
Sajjad, Imran, Sharma, Rajnikant, Gerdes, Ryan.  2017.  A Game-Theoretic Approach and Evaluation of Adversarial Vehicular Platooning. Proceedings of the 1st International Workshop on Safe Control of Connected and Autonomous Vehicles. :35–41.
In this paper, we consider an attack on a string of automated vehicles, or platoons, from a game-theoretic standpoint. Game theory enables us to ask the question of optimality in an adversarial environment; what is the optimal strategy that an attacker can use to disrupt the operation of automated vehicles, considering that the defenders are also optimally trying to maintain normal operation. We formulate a zero-sum game and find optimal controllers for different game parameters. A platoon is then simulated and its closed loop stability is then evaluated in the presence of an optimal attack. It is shown that with the constraint of optimality, the attacker cannot significantly degrade the stability of a vehicle platoon in nominal cases. It is motivated that in order to have an optimal solution that is nearly unstable, the game has to be formulated almost unfairly in favor of the attacker.
2017-12-20
Sevilla, S., Garcia-Luna-Aceves, J. J., Sadjadpour, H..  2017.  GroupSec: A new security model for the web. 2017 IEEE International Conference on Communications (ICC). :1–6.
The de facto approach to Web security today is HTTPS. While HTTPS ensures complete security for clients and servers, it also interferes with transparent content-caching at middleboxes. To address this problem and support both security and caching, we propose a new approach to Web security and privacy called GroupSec. The key innovation of GroupSec is that it replaces the traditional session-based security model with a new model based on content group membership. We introduce the GroupSec security model and show how HTTP can be easily adapted to support GroupSec without requiring changes to browsers, servers, or middleboxes. Finally, we present results of a threat analysis and performance experiments which show that GroupSec achieves notable performance benefits at the client and server while remaining as secure as HTTPS.
2018-02-28
Demetriou, Soteris, Zhang, Nan, Lee, Yeonjoon, Wang, XiaoFeng, Gunter, Carl A., Zhou, Xiaoyong, Grace, Michael.  2017.  HanGuard: SDN-driven Protection of Smart Home WiFi Devices from Malicious Mobile Apps. Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks. :122–133.
A new development of smart-home systems is to use mobile apps to control IoT devices across a Home Area Network (HAN). As verified in our study, those systems tend to rely on the Wi-Fi router to authenticate other devices. This treatment exposes them to the attack from malicious apps, particularly those running on authorized phones, which the router does not have information to control. Mitigating this threat cannot solely rely on IoT manufacturers, which may need to change the hardware on the devices to support encryption, increasing the cost of the device, or software developers who we need to trust to implement security correctly. In this work, we present a new technique to control the communication between the IoT devices and their apps in a unified, backward-compatible way. Our approach, called HanGuard, does not require any changes to the IoT devices themselves, the IoT apps or the OS of the participating phones. HanGuard uses an SDN-like approach to offer fine-grained protection: each phone runs a non-system userspace Monitor app to identify the party that attempts to access the protected IoT device and inform the router through a control plane of its access decision; the router enforces the decision on the data plane after verifying whether the phone should be allowed to talk to the device. We implemented our design over both Android and iOS (\textbackslashtextgreater 95% of mobile OS market share) and a popular router. Our study shows that HanGuard is both efficient and effective in practice.
2018-05-09
Tretyakova, Antonina, Seredynski, Franciszek, Guinand, Frédéric.  2017.  Heuristic and Meta-Heuristic Approaches for Energy-Efficient Coverage-Preserving Protocols in Wireless Sensor Networks. Proceedings of the 13th ACM Symposium on QoS and Security for Wireless and Mobile Networks. :51–58.
Monitoring some sites using a wireless sensor network (WSN) may be hampered by the difficulty of recharging or renewing the batteries of the sensing devices. Mechanisms aiming at improving the energy usage at any moment while fulfilling the application requirements are thus key for maximizing the lifetime of such networks. Among the different methods for achieving such a goal, we focus on energy management methods based on duty-cycling allowing the sensors to switch between two modes: a high-energy mode (active) and a low-energy mode (sleep). In this paper we propose two new scheduling heuristics for addressing the problem of maximizing the lifetime of a WSN under the constraint of coverage of a subset of fixed targets. The first one is a stochastic greedy algorithm and the second one is based on applying Simulated Annealing (SA). Both heuristics use a specific knowledge about the problem. Experimental results show that while both algorithms perform well, greedy algorithm is preferable for small and medium sizes networks, and SA algorithm has competitive advantages for larger networks.
2018-09-12
Tian, Jue, Tan, Rui, Guan, Xiaohong, Liu, Ting.  2017.  Hidden Moving Target Defense in Smart Grids. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :21–26.
Recent research has proposed a moving target defense (MTD) approach that actively changes transmission line susceptance to preclude stealthy false data injection (FDI) attacks against the state estimation of a smart grid. However, existing studies were often conducted under a less adversarial setting, in that they ignore the possibility that an alert attacker can also try to detect the activation of MTD and then cancel any FDI attack until they learn the new system configuration after MTD. Indeed, in this paper, we show that this can be achieved easily by the attacker. To improve the stealthiness of MTD against the attacker, we propose a hidden MTD approach that maintains the power flows of the whole grid after MTD. We develop an algorithm to construct the hidden MTD and analyze its feasibility condition when only a subset of transmission lines can adjust susceptance. Simulations are conducted to demonstrate the effectiveness of the hidden MTD against alert attackers under realistic settings.
2018-02-02
Liu, Zhe, Pöppelmann, Thomas, Oder, Tobias, Seo, Hwajeong, Roy, Sujoy Sinha, Güneysu, Tim, Großschädl, Johann, Kim, Howon, Verbauwhede, Ingrid.  2017.  High-Performance Ideal Lattice-Based Cryptography on 8-Bit AVR Microcontrollers. ACM Trans. Embed. Comput. Syst.. 16:117:1–117:24.
Over recent years lattice-based cryptography has received much attention due to versatile average-case problems like Ring-LWE or Ring-SIS that appear to be intractable by quantum computers. In this work, we evaluate and compare implementations of Ring-LWE encryption and the bimodal lattice signature scheme (BLISS) on an 8-bit Atmel ATxmega128 microcontroller. Our implementation of Ring-LWE encryption provides comprehensive protection against timing side-channels and takes 24.9ms for encryption and 6.7ms for decryption. To compute a BLISS signature, our software takes 317ms and 86ms for verification. These results underline the feasibility of lattice-based cryptography on constrained devices.
2018-05-01
Li, Huan, Guo, Chen, Wang, Donglin.  2017.  Hybrid Sorting Method for Successive Cancellation List Decoding of Polar Codes. Proceedings of the 2017 the 7th International Conference on Communication and Network Security. :23–26.
This paper proposes a hybrid metric sorting method (HMS) of successive cancellation list decoders for polar codes, which plays a critical role in decoding process. We review the state-of-the-art metric sorting methods and combine the advantages of them to generate the proposed method. Due to the optimized architecture, the proposed HMS method reduces the number of comparing stages effectively with little increase in comparisons. Evaluation results show that about 25 percent of comparing stages can be removed by HMS, compared with state-of-the-art methods. The proposed method enjoys a latency reduction for hardware implementation.
2018-02-14
Raju, S., Boddepalli, S., Gampa, S., Yan, Q., Deogun, J. S..  2017.  Identity management using blockchain for cognitive cellular networks. 2017 IEEE International Conference on Communications (ICC). :1–6.
Cloud-centric cognitive cellular networks utilize dynamic spectrum access and opportunistic network access technologies as a means to mitigate spectrum crunch and network demand. However, furnishing a carrier with personally identifiable information for user setup increases the risk of profiling in cognitive cellular networks, wherein users seek secondary access at various times with multiple carriers. Moreover, network access provisioning - assertion, authentication, authorization, and accounting - implemented in conventional cellular networks is inadequate in the cognitive space, as it is neither spontaneous nor scalable. In this paper, we propose a privacy-enhancing user identity management system using blockchain technology which places due importance on both anonymity and attribution, and supports end-to-end management from user assertion to usage billing. The setup enables network access using pseudonymous identities, hindering the reconstruction of a subscriber's identity. Our test results indicate that this approach diminishes access provisioning duration by up to 4x, decreases network signaling traffic by almost 40%, and enables near real-time user billing that may lead to approximately 3x reduction in payments settlement time.
2017-12-20
Cao, C., Zhang, H., Lu, T., Gulliver, T. A..  2017.  An improved cooperative jamming strategy for PHY security in a multi-hop communications system. 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM). :1–4.
In this paper, an improved cooperative jamming (CJ) strategy is developed for physical layer (PHY) security in a multi-hop wireless communication system which employs beamforming in the last hop. Users are assigned to independent groups based on the merger-and-split rule in a coalition game. The secrecy capacity for a valid coalition is a non-convex optimization problem which cannot easily be solved. Therefore, restrictions are added to transform this into a convex problem, and this is solved to obtain a suboptimal closed-form solution for the secrecy capacity. Simulation results are presented which show that the proposed strategy outperforms other methods such as non-cooperation, relay cooperation, and previous CJ approaches in terms of the secrecy capacity. Further, it is shown that the proposed multi-hop solution is suitable for long distance communication systems.
2018-08-23
Giotsas, Vasileios, Richter, Philipp, Smaragdakis, Georgios, Feldmann, Anja, Dietzel, Christoph, Berger, Arthur.  2017.  Inferring BGP Blackholing Activity in the Internet. Proceedings of the 2017 Internet Measurement Conference. :1–14.
The Border Gateway Protocol (BGP) has been used for decades as the de facto protocol to exchange reachability information among networks in the Internet. However, little is known about how this protocol is used to restrict reachability to selected destinations, e.g., that are under attack. While such a feature, BGP blackholing, has been available for some time, we lack a systematic study of its Internet-wide adoption, practices, and network efficacy, as well as the profile of blackholed destinations. In this paper, we develop and evaluate a methodology to automatically detect BGP blackholing activity in the wild. We apply our method to both public and private BGP datasets. We find that hundreds of networks, including large transit providers, as well as about 50 Internet exchange points (IXPs) offer blackholing service to their customers, peers, and members. Between 2014–2017, the number of blackholed prefixes increased by a factor of 6, peaking at 5K concurrently blackholed prefixes by up to 400 Autonomous Systems. We assess the effect of blackholing on the data plane using both targeted active measurements as well as passive datasets, finding that blackholing is indeed highly effective in dropping traffic before it reaches its destination, though it also discards legitimate traffic. We augment our findings with an analysis of the target IP addresses of blackholing. Our tools and insights are relevant for operators considering offering or using BGP blackholing services as well as for researchers studying DDoS mitigation in the Internet.