Biblio

Found 3405 results

Filters: First Letter Of Last Name is H  [Clear All Filters]
2017-03-29
Hasegawa, Toru, Tara, Yasutaka, Ryu, Kai, Koizumi, Yuki.  2016.  Emergency Message Delivery Mechanism in NDN Networks. Proceedings of the 3rd ACM Conference on Information-Centric Networking. :199–200.

Emergency message delivery in packet networks is promising in terms of resiliency to failures and service delivery to handicapped persons. In this paper, we propose an NDN(Named Data Networking)-based emergency message delivery mechanism by leveraging multicasting and ABE (Attribute-Based Encryption) functions.

2017-06-05
Padekar, Hitesh, Park, Younghee, Hu, Hongxin, Chang, Sang-Yoon.  2016.  Enabling Dynamic Access Control for Controller Applications in Software-Defined Networks. Proceedings of the 21st ACM on Symposium on Access Control Models and Technologies. :51–61.

Recent findings have shown that network and system attacks in Software-Defined Networks (SDNs) have been caused by malicious network applications that misuse APIs in an SDN controller. Such attacks can both crash the controller and change the internal data structure in the controller, causing serious damage to the infrastructure of SDN-based networks. To address this critical security issue, we introduce a security framework called AEGIS to prevent controller APIs from being misused by malicious network applications. Through the run-time verification of API calls, AEGIS performs a fine-grained access control for important controller APIs that can be misused by malicious applications. The usage of API calls is verified in real time by sophisticated security access rules that are defined based on the relationships between applications and data in the SDN controller. We also present a prototypical implementation of AEGIS and demonstrate its effectiveness and efficiency by performing six different controller attacks including new attacks we have recently discovered.

2017-05-22
Hessar, Mehrdad, Iyer, Vikram, Gollakota, Shyamnath.  2016.  Enabling On-body Transmissions with Commodity Devices. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :1100–1111.

We show for the first time that commodity devices can be used to generate wireless data transmissions that are confined to the human body. Specifically, we show that commodity input devices such as fingerprint sensors and touchpads can be used to transmit information to only wireless receivers that are in contact with the body. We characterize the propagation of the resulting transmissions across the whole body and run experiments with ten subjects to demonstrate that our approach generalizes across different body types and postures. We also evaluate our communication system in the presence of interference from other wearable devices such as smartwatches and nearby metallic surfaces. Finally, by modulating the operations of these input devices, we demonstrate bit rates of up to 50 bits per second over the human body.

2017-08-02
Bremler-Barr, Anat, Harchol, Yotam, Hay, David, Hel-Or, Yacov.  2016.  Encoding Short Ranges in TCAM Without Expansion: Efficient Algorithm and Applications. Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures. :35–46.

We present RENE –- a novel encoding scheme for short ranges on Ternary content addressable memory (TCAM), which, unlike previous solutions, does not impose row expansion, and uses bits proportionally to the maximal range length. We provide theoretical analysis to show that our encoding is the closest to the lower bound of number of bits used. In addition, we show several applications of our technique in the field of packet classification, and also, how the same technique could be used to efficiently solve other hard problems such as the nearest-neighbor search problem and its variants. We show that using TCAM, one could solve such problems in much higher rates than previously suggested solutions, and outperform known lower bounds in traditional memory models. We show by experiments that the translation process of RENE on switch hardware induces only a negligible 2.5% latency overhead. Our nearest neighbor implementation on a TCAM device provides search rates that are up to four orders of magnitude higher than previous best prior-art solutions.

2017-05-17
Hsu, Terry Ching-Hsiang, Hoffman, Kevin, Eugster, Patrick, Payer, Mathias.  2016.  Enforcing Least Privilege Memory Views for Multithreaded Applications. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :393–405.

Failing to properly isolate components in the same address space has resulted in a substantial amount of vulnerabilities. Enforcing the least privilege principle for memory accesses can selectively isolate software components to restrict attack surface and prevent unintended cross-component memory corruption. However, the boundaries and interactions between software components are hard to reason about and existing approaches have failed to stop attackers from exploiting vulnerabilities caused by poor isolation. We present the secure memory views (SMV) model: a practical and efficient model for secure and selective memory isolation in monolithic multithreaded applications. SMV is a third generation privilege separation technique that offers explicit access control of memory and allows concurrent threads within the same process to partially share or fully isolate their memory space in a controlled and parallel manner following application requirements. An evaluation of our prototype in the Linux kernel (TCB textless 1,800 LOC) shows negligible runtime performance overhead in real-world applications including Cherokee web server (textless 0.69%), Apache httpd web server (textless 0.93%), and Mozilla Firefox web browser (textless 1.89%) with at most 12 LOC changes.

2018-05-17
Mellis, David A., Buechley, Leah, Resnick, Mitchel, Hartmann, Bjorn.  2016.  Engaging Amateurs in the Design, Fabrication, and Assembly of Electronic Devices. Proceedings of the 2016 ACM Conference on Designing Interactive Systems. :1270–1281.
Chi, Pei-Yu(Peggy), Li, Yang, Hartmann, Bjorn.  2016.  Enhancing Cross-Device Interaction Scripting with Interactive Illustrations. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. :5482–5493.
2017-09-19
Huo, Jing, Gao, Yang, Shi, Yinghuan, Yang, Wanqi, Yin, Hujun.  2016.  Ensemble of Sparse Cross-Modal Metrics for Heterogeneous Face Recognition. Proceedings of the 2016 ACM on Multimedia Conference. :1405–1414.

Heterogeneous face recognition aims to identify or verify person identity by matching facial images of different modalities. In practice, it is known that its performance is highly influenced by modality inconsistency, appearance occlusions, illumination variations and expressions. In this paper, a new method named as ensemble of sparse cross-modal metrics is proposed for tackling these challenging issues. In particular, a weak sparse cross-modal metric learning method is firstly developed to measure distances between samples of two modalities. It learns to adjust rank-one cross-modal metrics to satisfy two sets of triplet based cross-modal distance constraints in a compact form. Meanwhile, a group based feature selection is performed to enforce that features in the same position of two modalities are selected simultaneously. By neglecting features that attribute to "noise" in the face regions (eye glasses, expressions and so on), the performance of learned weak metrics can be markedly improved. Finally, an ensemble framework is incorporated to combine the results of differently learned sparse metrics into a strong one. Extensive experiments on various face datasets demonstrate the benefit of such feature selection especially when heavy occlusions exist. The proposed ensemble metric learning has been shown superiority over several state-of-the-art methods in heterogeneous face recognition.

2017-05-22
Duncan, Bob, Happe, Andreas, Bratterud, Alfred.  2016.  Enterprise IoT Security and Scalability: How Unikernels Can Improve the Status Quo. Proceedings of the 9th International Conference on Utility and Cloud Computing. :292–297.

Cloud computing has been a great enabler for both the Internet of Things and Big Data. However, as with all new computing developments, development of the technology is usually much faster than consideration for, and development of, solutions for security and privacy. In a previous paper, we proposed that a unikernel solution could be used to improve security and privacy in a cloud scenario. In this paper, we outline how we might apply this approach to the Internet of Things, which can demonstrate an improvement over existing approaches.

2017-08-02
Jangir, Sunil Kumar, Hemrajani, Naveen.  2016.  Evaluation of Black Hole, Wormhole and Sybil Attacks in Mobile Ad-hoc Networks. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :74:1–74:6.

A mobile ad hoc network (MANET) is an infrastructure-less network of various mobile devices and generally known for its self configuring behavior. MANET can communicate over relatively bandwidth constrained wireless links. Due to limited bandwidth battery power and dynamic network, topology routing in MANET is a challenging issue. Collaborative attacks are particularly serious issues in MANET. Attacks are liable to occur if routing algorithms fail to detect prone threats and to find as well as remove malicious nodes. Our objective is to examine and improve the performance of network diminished by variety of attacks. The performance of MANET network is examined under Black hole, Wormhole and Sybil attacks using Performance matrices and then major issues which are related to these attacks are addressed.

2018-05-14
2018-06-04
2017-05-17
McClurg, Jedidiah, Hojjat, Hossein, Foster, Nate, Černý, Pavol.  2016.  Event-driven Network Programming. Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation. :369–385.

Software-defined networking (SDN) programs must simultaneously describe static forwarding behavior and dynamic updates in response to events. Event-driven updates are critical to get right, but difficult to implement correctly due to the high degree of concurrency in networks. Existing SDN platforms offer weak guarantees that can break application invariants, leading to problems such as dropped packets, degraded performance, security violations, etc. This paper introduces EVENT-DRIVEN CONSISTENT UPDATES that are guaranteed to preserve well-defined behaviors when transitioning between configurations in response to events. We propose NETWORK EVENT STRUCTURES (NESs) to model constraints on updates, such as which events can be enabled simultaneously and causal dependencies between events. We define an extension of the NetKAT language with mutable state, give semantics to stateful programs using NESs, and discuss provably-correct strategies for implementing NESs in SDNs. Finally, we evaluate our approach empirically, demonstrating that it gives well-defined consistency guarantees while avoiding expensive synchronization and packet buffering.

2017-05-30
Moratelli, Carlos, Johann, Sergio, Hessel, Fabiano.  2016.  Exploring Embedded Systems Virtualization Using MIPS Virtualization Module. Proceedings of the ACM International Conference on Computing Frontiers. :214–221.

Embedded virtualization has emerged as a valuable way to increase security, reduce costs, improve software quality and decrease design time. The late adoption of hardware-assisted virtualization in embedded processors induced the development of hypervisors primarily based on para-virtualization. Recently, embedded processor designers developed virtualization extensions for their processor architectures similar to those adopted in cloud computing years ago. Now, the hypervisors are migrating to a mixed approach, where basic operating system functionalities take advantage of full-virtualization and advanced functionalities such as inter-domain communication remain para-virtualized. In this paper, we discuss the key features for embedded virtualization. We show how our embedded hypervisor was designed to support these features, taking advantage of the hardware-assisted virtualization available to the MIPS family of processors. Different aspects of our hypervisor are evaluated and compared to other similar approaches. A hardware platform was used to run benchmarks on virtualized instances of both Linux and a RTOS for performance analysis. Finally, the results obtained show that our hypervisor can be applied as a sound solution for the IoT.

2017-06-27
Ramos Mota, Roberta C., Cartwright, Stephen, Sharlin, Ehud, Hamdi, Hamidreza, Costa Sousa, Mario, Chen, Zhangxin.  2016.  Exploring Immersive Interfaces for Well Placement Optimization in Reservoir Models. Proceedings of the 2016 Symposium on Spatial User Interaction. :121–130.

As the oil and gas industry's ultimate goal is to uncover efficient and economic ways to produce oil and gas, well optimization studies are crucially important for reservoir engineers. Although this task has a major impact on reservoir productivity, it has been challenging for reservoir engineers to perform since it involves time-consuming flow simulations to search a large solution space for an optimal well plan. Our work aims to provide engineers a) an analytical method to perform static connectivity analysis as a proxy for flow simulation, b) an application to support well optimization using our method and c) an immersive experience that benefits engineers and supports their needs and preferences when performing the design and assessment of well trajectories. For the latter purpose, we explore our tool with three immersive environments: a CAVE with a tracked gamepad; a HMD with a tracked gamepad; and a HMD with a Leap Motion controller. This paper describes our application and its techniques in each of the different immersive environments. This paper also describes our findings from an exploratory evaluation conducted with six reservoir engineers, which provided insight into our application, and allowed us to discuss the potential benefits of immersion for the oil and gas domain.

2017-05-19
Ben- Adar Bessos, Mai, Birnbach, Simon, Herzberg, Amir, Martinovic, Ivan.  2016.  Exposing Transmitters in Mobile Multi-Agent Games. Proceedings of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy. :125–136.

We study the trade-off between the benefits obtained by communication, vs. the risks due to exposure of the location of the transmitter. To study this problem, we introduce a game between two teams of mobile agents, the P-bots team and the E-bots team. The E-bots attempt to eavesdrop and collect information, while evading the P-bots; the P-bots attempt to prevent this by performing patrol and pursuit. The game models a typical use-case of micro-robots, i.e., their use for (industrial) espionage. We evaluate strategies for both teams, using analysis and simulations.

2017-05-17
Legunsen, Owolabi, Hariri, Farah, Shi, August, Lu, Yafeng, Zhang, Lingming, Marinov, Darko.  2016.  An Extensive Study of Static Regression Test Selection in Modern Software Evolution. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :583–594.

Regression test selection (RTS) aims to reduce regression testing time by only re-running the tests affected by code changes. Prior research on RTS can be broadly split into dy namic and static techniques. A recently developed dynamic RTS technique called Ekstazi is gaining some adoption in practice, and its evaluation shows that selecting tests at a coarser, class-level granularity provides better results than selecting tests at a finer, method-level granularity. As dynamic RTS is gaining adoption, it is timely to also evaluate static RTS techniques, some of which were proposed over three decades ago but not extensively evaluated on modern software projects. This paper presents the first extensive study that evaluates the performance benefits of static RTS techniques and their safety; a technique is safe if it selects to run all tests that may be affected by code changes. We implemented two static RTS techniques, one class-level and one method-level, and compare several variants of these techniques. We also compare these static RTS techniques against Ekstazi, a state-of-the-art, class-level, dynamic RTS technique. The experimental results on 985 revisions of 22 open-source projects show that the class-level static RTS technique is comparable to Ekstazi, with similar performance benefits, but at the risk of being unsafe sometimes. In contrast, the method-level static RTS technique performs rather poorly.

2017-05-19
Liu, Xiaomei, Sun, Yong, Huang, Caiyun, Zou, Xueqiang, Qin, Zhiguang.  2016.  Fast and Accurate Identification of Active Recursive Domain Name Servers in High-speed Network. Proceedings of the 2016 ACM International on Workshop on Traffic Measurements for Cybersecurity. :40–49.

Fast and accurate identification of active recursive domain name servers (RDNS) is a fundamental step to evaluate security risk degrees of DNS systems. Much identification work have been proposed based on network traffic measurement technology. Even though identifying RDNS accurately, they waste huge network resources, and fail to obtain host activity and distinguish between direct and indirect RDNS. In this paper, we proposed an approach to identify direct and forward RDNS based on our three key insights on their request-response behaviors, and proposed an approach to identify indirect RDNS based on CNAME redirect behaviors. To work in high-speed backbone networks, we further proposed an online connectivity estimation algorithm to obtain estimated values used in our identification approaches. According to our experiments, we can identify RDNS with a high accuracy by selecting the reasonable thresholds. The accuracy of identifying direct and forward RDNS can reach 89%.The accuracy of identifying indirect RDNS can reach 90%.Moreover, our work is capable of real-time analyzing high speed backbone traffics.

2018-05-14
2017-07-24
Wu, Ao, Huang, Yongming, Zhang, Guobao.  2016.  Feature Fusion Methods for Robust Speech Emotion Recognition Based on Deep Belief Networks. Proceedings of the Fifth International Conference on Network, Communication and Computing. :6–10.

The speech emotion recognition accuracy of prosody feature and voice quality feature declines with the decrease of SNR (Signal to Noise Ratio) of speech signals. In this paper, we propose novel sub-band spectral centroid weighted wavelet packet cepstral coefficients (W-WPCC) for robust speech emotion recognition. The W-WPCC feature is computed by combining the sub-band energies with sub-band spectral centroids via a weighting scheme to generate noise-robust acoustic features. And Deep Belief Networks (DBNs) are artificial neural networks having more than one hidden layer, which are first pre-trained layer by layer and then fine-tuned using back propagation algorithm. The well-trained deep neural networks are capable of modeling complex and non-linear features of input training data and can better predict the probability distribution over classification labels. We extracted prosody feature, voice quality features and wavelet packet cepstral coefficients (WPCC) from the speech signals to combine with W-WPCC and fused them by Deep Belief Networks (DBNs). Experimental results on Berlin emotional speech database show that the proposed fused feature with W-WPCC is more suitable in speech emotion recognition under noisy conditions than other acoustics features and proposed DBNs feature learning structure combined with W-WPCC improve emotion recognition performance over the conventional emotion recognition method.

2018-05-17
Paredes, Pablo, Ko, Ryuka, Calle-Ortiz, Eduardo, Canny, John, Hartmann, Bjorn, Niemeyer, Greg.  2016.  Fiat-Lux: Interactive Urban Lights for Combining Positive Emotion and Efficiency. Proceedings of the 2016 ACM Conference on Designing Interactive Systems. :785–795.
2017-10-18
Han, Wenlin, Xiao, Yang.  2016.  FNFD: A Fast Scheme to Detect and Verify Non-Technical Loss Fraud in Smart Grid. Proceedings of the 2016 ACM International on Workshop on Traffic Measurements for Cybersecurity. :24–34.

Non-Technical Loss (NTL) fraud is a very common fraud in power systems. In traditional power grid, energy theft, via meter tampering, is the main form of NTL fraud. With the rise of Smart Grid, adversaries can take advantage of two-way communication to commit NTL frauds by meter manipulation or network intrusion. Previous schemes were proposed to detect NTL frauds but are not efficient. In this paper, we propose a Fast NTL Fraud Detection and verification scheme (FNFD). FNFD is based on Recursive Least Square (RLS) to model adversary behavior. Experimental results show that FNFD outperforms existing schemes in terms of efficiency and overhead.

2017-04-24
Rauf, Usman, Gillani, Fida, Al-Shaer, Ehab, Halappanavar, Mahantesh, Chatterjee, Samrat, Oehmen, Christopher.  2016.  Formal Approach for Resilient Reachability Based on End-System Route Agility. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :117–127.

The deterministic nature of existing routing protocols has resulted into an ossified Internet with static and predictable network routes. This gives persistent attackers (e.g. eavesdroppers and DDoS attackers) plenty of time to study the network and identify the vulnerable (critical) links to plan devastating and stealthy attacks. Recently, Moving Target Defense (MTD) based approaches have been proposed to to defend against DoS attacks. However, MTD based approaches for route mutation are oriented towards re-configuring the parameters in Local Area Networks (LANs), and do not provide any protection against infrastructure level attacks, which inherently limits their use for mission critical services over the Internet infrastructure. To cope with these issues, we extend the current routing architecture to consider end-hosts as routing elements, and present a formal method based agile defense mechanism to embed resiliency in the existing cyber infrastructure. The major contributions of this paper include: (1) formalization of efficient and resilient End to End (E2E) reachability problem as a constraint satisfaction problem, which identifies the potential end-hosts to reach a destination while satisfying resilience and QoS constraints, (2) design and implementation of a novel decentralized End Point Route Mutation (EPRM) protocol, and (3) design and implementation of planning algorithm to minimize the overlap between multiple flows, for the sake of maximizing the agility in the system. Our PlanetLab based implementation and evaluation validates the correctness, effectiveness and scalability of the proposed approach.

2018-05-11
2017-05-16
Wan, Mengting, Chen, Xiangyu, Kaplan, Lance, Han, Jiawei, Gao, Jing, Zhao, Bo.  2016.  From Truth Discovery to Trustworthy Opinion Discovery: An Uncertainty-Aware Quantitative Modeling Approach. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1885–1894.

In this era of information explosion, conflicts are often encountered when information is provided by multiple sources. Traditional truth discovery task aims to identify the truth the most trustworthy information, from conflicting sources in different scenarios. In this kind of tasks, truth is regarded as a fixed value or a set of fixed values. However, in a number of real-world cases, objective truth existence cannot be ensured and we can only identify single or multiple reliable facts from opinions. Different from traditional truth discovery task, we address this uncertainty and introduce the concept of trustworthy opinion of an entity, treat it as a random variable, and use its distribution to describe consistency or controversy, which is particularly difficult for data which can be numerically measured, i.e. quantitative information. In this study, we focus on the quantitative opinion, propose an uncertainty-aware approach called Kernel Density Estimation from Multiple Sources (KDEm) to estimate its probability distribution, and summarize trustworthy information based on this distribution. Experiments indicate that KDEm not only has outstanding performance on the classical numeric truth discovery task, but also shows good performance on multi-modality detection and anomaly detection in the uncertain-opinion setting.