Biblio

Found 3405 results

Filters: First Letter Of Last Name is H  [Clear All Filters]
2018-05-25
Symington, Andrew, Medvesek, Jan, Martin, Paul, Srivastava, Mani, Hailes, Stephen.  2015.  Real-time Indoor Localization using Magnetic, Time of Flight, and Signal Strength Inference Maps. Indoor Location Competition at the ACM/IEEE Information Processing in Sensor Networks (IPSN).
2018-05-14
Lu, Yao, Hourdos, John.  2015.  A Real-Time Process for Predicting Shockwave Trajectory on Freeway Traffic. Transportation Research Board 94th Annual Meeting.
2017-03-08
Sadasivam, G. K., Hota, C..  2015.  Scalable Honeypot Architecture for Identifying Malicious Network Activities. 2015 International Conference on Emerging Information Technology and Engineering Solutions. :27–31.

Server honey pots are computer systems that hide in a network capturing attack packets. As the name goes, server honey pots are installed in server machines running a set of services. Enterprises and government organisations deploy these honey pots to know the extent of attacks on their network. Since, most of the recent attacks are advanced persistent attacks there is much research work going on in building better peripheral security measures. In this paper, the authors have deployed several honey pots in a virtualized environment to gather traces of malicious activities. The network infrastructure is resilient and provides much information about hacker's activities. It is cost-effective and can be easily deployed in any organisation without specialized hardware.

2018-05-14
Parikh, Gordon, Hourdos, John.  2015.  Simulation Platform for Planning and Operational Evaluation of HOT Lanes. Transportation Research Board 94th Annual Meeting.
2018-05-25
2018-03-29
2018-05-25
2018-05-15
2015-04-04
Hongying Du, Bennett Y. Narron, Nirav Ajmeri, Emily Berglund, Jon Doyle, Munindar P. Singh.  2015.  Understanding Sanction under Variable Observability in a Secure, Collaborative Environment. Proceedings of the International Symposium and Bootcamp on the Science of Security (HotSoS). :1–10.

Norms are a promising basis for governance in secure, collaborative environments---systems in which multiple principals interact. Yet, many aspects of norm-governance remain poorly understood, inhibiting adoption in real-life collaborative systems. This work focuses on the combined effects of sanction and the observability of the sanctioner in a secure, collaborative environment.  We present CARLOS, a multiagent simulation of graduate students performing research within a university lab setting, to explore these phenomena. The simulation consists of agents maintaining ``compliance" to enforced security norms while remaining ``motivated" as researchers. We hypothesize that (1) delayed observability of the environment would lead to greater motivation of agents to complete research tasks than immediate observability and (2) sanctioning a group for a violation would lead to greater compliance to security norms than sanctioning an individual. We find that only the latter hypothesis is supported.  Group sanction is an interesting topic for future research regarding a means for norm-governance which yields significant compliance with enforced security policy at a lower cost. Our ultimate contribution is to apply social simulation as a way to explore environmental properties and policies to evaluate key transitions in outcome, as a basis for guiding further and more demanding empirical research.

2018-03-29
2018-05-15
2016-12-05
Hanan Hibshi, Travis Breaux, Maria Riaz, Laurie Williams.  2015.  Discovering Decision-Making Patterns for Security Novices and Experts.

Security analysis requires some degree of knowledge to align threats to vulnerabilities in information technology. Despite the abundance of security requirements, the evidence suggests that security experts are not applying these checklists. Instead, they default to their background knowledge to identify security vulnerabilities. To better understand the different effects of security checklists, analysis and expertise, we conducted a series of interviews to capture and encode the decisionmaking process of security experts and novices during three security requirements analysis exercises. Participants were asked to analyze three kinds of artifacts: source code, data flow diagrams, and network diagrams, for vulnerabilities, and then to apply a requirements checklist to demonstrate their ability to mitigate vulnerabilities. We framed our study using Situation Awareness theory to elicit responses that were analyzed using coding theory and grounded analysis. Our results include decision-making patterns that characterize how analysts perceive, comprehend and project future threats, and how these patterns relate to selecting security mitigations. Based on this analysis, we discovered new theory to measure how security experts and novices apply attack models and how structured and unstructured analysis enables increasing security requirements coverage. We discuss suggestions of how our method could be adapted and applied to improve training and education instruments of security analysts.

2016-02-11
Hemank Lamba, Thomas Glazier, Bradley Schmerl, Jurgen Pfeffer, David Garlan.  2015.  Detecting Insider Threats in Software Systems using Graph Models of Behavioral Paths. HotSoS '15 Proceedings of the 2015 Symposium and Bootcamp on the Science of Security.

Insider threats are a well-known problem, and previous studies have shown that it has a huge impact over a wide range of sectors like financial services, governments, critical infrastructure services and the telecommunications sector. Users, while interacting with any software system, leave a trace of what nodes they accessed and in what sequence. We propose to translate these sequences of observed activities into paths on the graph of the underlying software architectural model. We propose a clustering algorithm to find anomalies in the data, which can be combined with contextual information to confirm as an insider threat.

2016-02-15
Alireza Sadeghi, Hamid Bagheri, Sam Malek.  2015.  Analysis of Android Inter-App Security Vulnerabilities Using COVERT. ICSE '15 Proceedings of the 37th International Conference on Software Engineering. 2

The state-of-the-art in securing mobile software systems are substantially intended to detect and mitigate vulnerabilities in a single app, but fail to identify vulnerabilities that arise due to the interaction of multiple apps, such as collusion attacks and privilege escalation chaining, shown to be quite common in the apps on the market. This paper demonstrates COVERT, a novel approach and accompanying tool-suite that relies on a hybrid static analysis and lightweight formal analysis technique to enable compositional security assessment of complex software. Through static analysis of Android application packages, it extracts relevant security specifications in an analyzable formal specification language, and checks them as a whole for inter-app vulnerabilities. To our knowledge, COVERT is the first formally-precise analysis tool for automated compositional analysis of Android apps. Our study of hundreds of Android apps revealed dozens of inter-app vulnerabilities, many of which were previously unknown. A video highlighting the main features of the tool can be found at: http://youtu.be/bMKk7OW7dGg.

Hamid Bagheri, Eunsuk Kang, Sam Malek, Daniel Jackson.  2015.  Detection of Design Flaws in the Android Permission Protocol Through Bounded Verification. 20th International Symposium on Formal Methods.

The ever increasing expansion of mobile applications into nearly every aspect of modern life, from banking to healthcare systems, is making their security more important than ever. Modern smartphone operating systems (OS) rely substantially on the permission-based security model to enforce restrictions on the operations that each application can perform. In this paper, we perform an analysis of the permission protocol implemented in Android, a popular OS for smartphones. We propose a formal model of the Android permission protocol in Alloy, and describe a fully automatic analysis that identifies potential flaws in the protocol. A study of real-world Android applications corroborates our finding that the flaws in the Android permission protocol can have severe security implications, in some cases allowing the attacker to bypass the permission checks entirely.

Hanan Hibshi, Travis Breaux, Stephen Broomell.  2015.  Assessment of Risk Perception in Security Requirements Composition. IEEE 23rd International Requirements Engineering Conference (RE'15).

Security requirements analysis depends on how well-trained analysts perceive security risk, understand the impact of various vulnerabilities, and mitigate threats. When systems are composed of multiple machines, configurations, and software components that interact with each other, risk perception must account for the composition of security requirements. In this paper, we report on how changes to security requirements affect analysts risk perceptions and their decisions about how to modify the requirements to reach adequate security levels. We conducted two user surveys of 174 participants wherein participants assess security levels across 64 factorial vignettes. We analyzed the survey results using multi-level modeling to test for the effect of security requirements composition on participants’ overall security adequacy ratings and on their ratings of individual requirements. We accompanied this analysis with grounded analysis of elicited requirements aimed at lowering the security risk. Our results suggest that requirements composition affects experts’ adequacy ratings on security requirements. In addition, we identified three categories of requirements modifications, called refinements, replacements and reinforcements, and we measured how these categories compare with overall perceived security risk. Finally, we discuss the future impact of our work in security requirements assessment practice.

Travis Breaux, Daniel Smullen, Hanan Hibshi.  2015.  Detecting Repurposing and Over-collection in Multi-Party Privacy Requirements Specifications. IEEE 23rd International Requirements Engineering Conference (RE'15).

Mobile and web applications increasingly leverage service-oriented architectures in which developers integrate third-party services into end user applications. This includes identity management, mapping and navigation, cloud storage, and advertising services, among others. While service reuse reduces development time, it introduces new privacy and security risks due to data repurposing and over-collection as data is shared among multiple parties who lack transparency into third-party data practices. To address this challenge, we propose new techniques based on Description Logic (DL) for modeling multi-party data flow requirements and verifying the purpose specification and collection and use limitation principles, which are prominent privacy properties found in international standards and guidelines. We evaluate our techniques in an empirical case study that examines the data practices of the Waze mobile application and three of their service providers: Facebook Login, Amazon Web Services (a cloud storage provider), and Flurry.com (a popular mobile analytics and advertising platform). The study results include detected conflicts and violations of the principles as well as two patterns for balancing privacy and data use flexibility in requirements specifications. Analysis of automation reasoning over the DL models show that reasoning over complex compositions of multi-party systems is feasible within exponential asymptotic timeframes proportional to the policy size, the number of expressed data, and orthogonal to the number of conflicts found. 

2016-12-07
Travis Breaux, Daniel Smullen, Hanan Hibshi.  2015.  Detecting Repurposing and Over-Collection in Multi-party Privacy Requirements Specifications. RE 2015: Requirement Engineering Conference.

Mobile and web applications increasingly leverage service-oriented architectures in which developers integrate third-party services into end user applications. This includes identity management, mapping and navigation, cloud storage, and advertising services, among others. While service reuse reduces development time, it introduces new privacy and security risks due to data repurposing and over-collection as data is shared among multiple parties who lack transparency into thirdparty data practices. To address this challenge, we propose new techniques based on Description Logic (DL) for modeling multiparty data flow requirements and verifying the purpose specification and collection and use limitation principles, which are prominent privacy properties found in international standards and guidelines. We evaluate our techniques in an empirical case study that examines the data practices of the Waze mobile application and three of their service providers: Facebook Login, Amazon Web Services (a cloud storage provider), and Flurry.com (a popular mobile analytics and advertising platform). The study results include detected conflicts and violations of the principles as well as two patterns for balancing privacy and data use flexibility in requirements specifications. Analysis of automation reasoning over the DL models show that reasoning over complex compositions of multi-party systems is feasible within exponential asymptotic timeframes proportional to the policy size, the number of expressed data, and orthogonal to the number of conflicts found.

2016-02-15
Hamid Bagheri, Alireza Sadeghi, Sam Malek, Joshua Garcia.  2015.  COVERT: Compositional Analysis of Android Inter-App Permission Leakage. IEEE Transactions on Software Engineering . 41(9)

 

Android is the most popular platform for mobile devices. It facilitates sharing of data and services among applications using a rich inter-app communication system. While access to resources can be controlled by the Android permission system, enforcing permissions is not sufficient to prevent security violations, as permissions may be mismanaged, intentionally or unintentionally. Android's enforcement of the permissions is at the level of individual apps, allowing multiple malicious apps to collude and combine their permissions or to trick vulnerable apps to perform actions on their behalf that are beyond their individual privileges. In this paper, we present COVERT, a tool for compositional analysis of Android inter-app vulnerabilities. COVERT's analysis is modular to enable incremental analysis of applications as they are installed, updated, and removed. It statically analyzes the reverse engineered source code of each individual app, and extracts relevant security specifications in a format suitable for formal verification. Given a collection of specifications extracted in this way, a formal analysis engine (e.g., model checker) is then used to verify whether it is safe for a combination of applications-holding certain permissions and potentially interacting with each other-to be installed together. Our experience with using COVERT to examine over 500 real-world apps corroborates its ability to find inter-app vulnerabilities in bundles of some of the most popular apps on the market.

2016-02-10
Junjie Qian, Witawas Srisa-an, Du Li, Hong Jiang, Sharad Seth, Yaodong Yang.  2015.  SmartStealing: Analysis and Optimization of Work Stealing in Parallel Garbage Collection for Java VM.. Principles and Practice of Programming in Java (PPPJ).

Parallel garbage collection has been used to speedup the collection process on multicore architectures. Similar to other parallel techniques, balancing the workload among threads is critical to ensuring good overall collection performance. To this end, work stealing is employed by the current stateof-the-art Java Virtual Machine, OpenJDK, to keep GC threads from idling during a collection process. However, we found that the current algorithm is not efficient. Its usage can often cause GC performance to be worse than when work stealing is not used. In this paper, we identify three factors that affect work stealing efficiency: determining tasks that can benefit from stealing, frequency with which to attempt stealing, and performance impacts of failed stealing attempts. Based on this analysis, we propose SmartStealing, a new algorithm that can automatically decide whether to attempt stealing at a particular point during execution. If stealing is attempted, it can efficiently identify a task to steal from. We then compare the collection performances when (i) the default work stealing algorithm is used, (ii) work stealing is not used at all, and (iii) the SmartStealing approach is used. Without modifying the remaining garbage collection system, the evaluation result shows that SmartStealing can reduce the parallel GC execution time for 19 of the 21 benchmarks. The average reduction is 50.4% and the highest reduction is 78.7%. We also investigate the performances of SmartStealing on NUMA and UMA architectures.

2016-12-01
Huoran Li, Peking University, Xuan Lu, Peking University, Xuanzhe Liu, Peking University, Tao Xie, University of Illinois at Urbana-Champaign, Kaigui Bian, Peking University, Felix Xiaozhu Lin, Purdue University, Qiaozhu Mei, University of Michigan, Feng Feng, Wandoujia Lab.  2015.  Characterizing Smartphone Usage Patterns from Millions of Android Users. 2015 Internet Measurement Conference (IMC 2015).

The prevalence of smart devices has promoted the popularity of mobile applications (a.k.a. apps) in recent years. A number of interesting and important questions remain unanswered, such as why a user likes/dislikes an app, how an app becomes popular or eventually perishes, how a user selects apps to install and interacts with them, how frequently an app is used and how much trac it generates, etc. This paper presents an empirical analysis of app usage behaviors collected from millions of users of Wandoujia, a leading Android app marketplace in China. The dataset covers two types of user behaviors of using over 0.2 million Android apps, including (1) app management activities (i.e., installation, updating, and uninstallation) of over 0.8 million unique users and (2) app network trac from over 2 million unique users. We explore multiple aspects of such behavior data and present interesting patterns of app usage. The results provide many useful implications to the developers, users, and disseminators of mobile apps.

2016-02-15
Nariman Mirzaei, Hamid Bagheri, Riyadh Mahmood, Sam Malek.  2015.  SIG-Droid: Automated System Input Generation for Android Applications. 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE).

Pervasiveness of smartphones and the vast number of corresponding apps have underlined the need for applicable automated software testing techniques. A wealth of research has been focused on either unit or GUI testing of smartphone apps, but little on automated support for end-to-end system testing. This paper presents SIG-Droid, a framework for system testing of Android apps, backed with automated program analysis to extract app models and symbolic execution of source code guided by such models for obtaining test inputs that ensure covering each reachable branch in the program. SIG-Droid leverages two automatically extracted models: Interface Model and Behavior Model. The Interface Model is used to find values that an app can receive through its interfaces. Those values are then exchanged with symbolic values to deal with constraints with the help of a symbolic execution engine. The Behavior Model is used to drive the apps for symbolic execution and generate sequences of events. We provide an efficient implementation of SIG-Droid based in part on Symbolic PathFinder, extended in this work to support automatic testing of Android apps. Our experiments show SIG-Droid is able to achieve significantly higher code coverage than existing automated testing tools targeted for Android.

2017-02-14
P. Hu, H. Li, H. Fu, D. Cansever, P. Mohapatra.  2015.  "Dynamic defense strategy against advanced persistent threat with insiders". 2015 IEEE Conference on Computer Communications (INFOCOM). :747-755.

The landscape of cyber security has been reformed dramatically by the recently emerging Advanced Persistent Threat (APT). It is uniquely featured by the stealthy, continuous, sophisticated and well-funded attack process for long-term malicious gain, which render the current defense mechanisms inapplicable. A novel design of defense strategy, continuously combating APT in a long time-span with imperfect/incomplete information on attacker's actions, is urgently needed. The challenge is even more escalated when APT is coupled with the insider threat (a major threat in cyber-security), where insiders could trade valuable information to APT attacker for monetary gains. The interplay among the defender, APT attacker and insiders should be judiciously studied to shed insights on a more secure defense system. In this paper, we consider the joint threats from APT attacker and the insiders, and characterize the fore-mentioned interplay as a two-layer game model, i.e., a defense/attack game between defender and APT attacker and an information-trading game among insiders. Through rigorous analysis, we identify the best response strategies for each player and prove the existence of Nash Equilibrium for both games. Extensive numerical study further verifies our analytic results and examines the impact of different system configurations on the achievable security level.

L. Rivière, J. Bringer, T. H. Le, H. Chabanne.  2015.  "A novel simulation approach for fault injection resistance evaluation on smart cards". 2015 IEEE Eighth International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :1-8.

Physical perturbations are performed against embedded systems that can contain valuable data. Such devices and in particular smart cards are targeted because potential attackers hold them. The embedded system security must hold against intentional hardware failures that can result in software errors. In a malicious purpose, an attacker could exploit such errors to find out secret data or disrupt a transaction. Simulation techniques help to point out fault injection vulnerabilities and come at an early stage in the development process. This paper proposes a generic fault injection simulation tool that has the particularity to embed the injection mechanism into the smart card source code. By its embedded nature, the Embedded Fault Simulator (EFS) allows us to perform fault injection simulations and side-channel analyses simultaneously. It makes it possible to achieve combined attacks, multiple fault attacks and to perform backward analyses. We appraise our approach on real, modern and complex smart card systems under data and control flow fault models. We illustrate the EFS capacities by performing a practical combined attack on an Advanced Encryption Standard (AES) implementation.

2018-05-25
Q. Xiang, H. Zhang, J. Wang, G. Xing, S. Lin, X. Liu.  2015.  On optimal diversity in network-coding-based routing in wireless networks. 2015 IEEE Conference on Computer Communications (INFOCOM). :765-773.