Biblio

Found 685 results

Filters: First Letter Of Last Name is I  [Clear All Filters]
2018-12-10
Murray, B., Islam, M. A., Pinar, A. J., Havens, T. C., Anderson, D. T., Scott, G..  2018.  Explainable AI for Understanding Decisions and Data-Driven Optimization of the Choquet Integral. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.

To date, numerous ways have been created to learn a fusion solution from data. However, a gap exists in terms of understanding the quality of what was learned and how trustworthy the fusion is for future-i.e., new-data. In part, the current paper is driven by the demand for so-called explainable AI (XAI). Herein, we discuss methods for XAI of the Choquet integral (ChI), a parametric nonlinear aggregation function. Specifically, we review existing indices, and we introduce new data-centric XAI tools. These various XAI-ChI methods are explored in the context of fusing a set of heterogeneous deep convolutional neural networks for remote sensing.

2019-01-31
Jiang, Shunning, Ilbeyi, Berkin, Batten, Christopher.  2018.  Mamba: Closing the Performance Gap in Productive Hardware Development Frameworks. Proceedings of the 55th Annual Design Automation Conference. :60:1–60:6.

Modern high-level languages bring compelling productivity benefits to hardware design and verification. For example, hardware generation and simulation frameworks (HGSFs) use a single "host" language for parameterization, static elaboration, test bench generation, behavioral modeling, and simulation. Unfortunately, HGSFs often suffer from slow simulator performance which undermines their potential productivity benefits. In this paper, we introduce Mamba, a new Python-based HGSF that co-optimizes both the framework and a general-purpose just-in-time compiler. We conduct a quantitative comparison of Mamba vs. traditional and emerging hardware development frameworks across both simple and complex designs. Our results suggest Mamba is able to match the performance of commercial Verilog simulators and is 10× faster than existing HGSFs while still maintaining the productivity of using a high-level language in hardware design.

2020-07-16
Bovo, Cristian, Ilea, Valentin, Rolandi, Claudio.  2018.  A Security-Constrained Islanding Feasibility Optimization Model in the Presence of Renewable Energy Sources. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1—6.

The massive integration of Renewable Energy Sources (RES) into power systems is a major challenge but it also provides new opportunities for network operation. For example, with a large amount of RES available at HV subtransmission level, it is possible to exploit them as controlling resources in islanding conditions. Thus, a procedure for off-line evaluation of islanded operation feasibility in the presence of RES is proposed. The method finds which generators and loads remain connected after islanding to balance the island's real power maximizing the amount of supplied load and assuring the network's long-term security. For each possible islanding event, the set of optimal control actions (load/generation shedding) to apply in case of actual islanding, is found. The procedure is formulated as a Mixed Integer Non-Linear Problem (MINLP) and is solved using Genetic Algorithms (GAs). Results, including dynamic simulations, are shown for a representative HV subtransmission grid.

2019-02-13
Irmak, E., Erkek, İ.  2018.  An overview of cyber-attack vectors on SCADA systems. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–5.

Most of the countries evaluate their energy networks in terms of national security and define as critical infrastructure. Monitoring and controlling of these systems are generally provided by Industrial Control Systems (ICSs) and/or Supervisory Control and Data Acquisition (SCADA) systems. Therefore, this study focuses on the cyber-attack vectors on SCADA systems to research the threats and risks targeting them. For this purpose, TCP/IP based protocols used in SCADA systems have been determined and analyzed at first. Then, the most common cyber-attacks are handled systematically considering hardware-side threats, software-side ones and the threats for communication infrastructures. Finally, some suggestions are given.

2020-11-02
Ivanov, I, Maple, C, Watson, T, Lee, S.  2018.  Cyber security standards and issues in V2X communications for Internet of Vehicles. Living in the Internet of Things: Cybersecurity of the IoT – 2018. :1—6.

Significant developments have taken place over the past few years in the area of vehicular communication systems in the ITS environment. It is vital that, in these environments, security is considered in design and implementation since compromised vulnerabilities in one vehicle can be propagated to other vehicles, especially given that V2X communication is through an ad-hoc type network. Recently, many standardisation organisations have been working on creating international standards related to vehicular communication security and the so-called Internet of Vehicles (IoV). This paper presents a discussion of current V2X communications cyber security issues and standardisation approaches being considered by standardisation bodies such as the ISO, the ITU, the IEEE, and the ETSI.

2018-12-10
Ma, L. M., IJtsma, M., Feigh, K. M., Paladugu, A., Pritchett, A. R..  2018.  Modelling and evaluating failures in human-robot teaming using simulation. 2018 IEEE Aerospace Conference. :1–16.

As robotic capabilities improve and robots become more capable as team members, a better understanding of effective human-robot teaming is needed. In this paper, we investigate failures by robots in various team configurations in space EVA operations. This paper describes the methodology of extending and the application of Work Models that Compute (WMC), a computational simulation framework, to model robot failures, interruptions, and the resolutions they require. Using these models, we investigate how different team configurations respond to a robot's failure to correctly complete the task and overall mission. We also identify key factors that impact the teamwork metrics for team designers to keep in mind while assembling teams and assigning taskwork to the agents. We highlight different metrics that these failures impact on team performance through varying components of teaming and interaction that occur. Finally, we discuss the future implications of this work and the future work to be done to investigate function allocation in human-robot teams.

2022-04-21
Strielkina, Anastasiia, Illiashenko, Oleg, Zhydenko, Marina, Uzun, Dmytro.  2018.  Cybersecurity of healthcare IoT-based systems: Regulation and case-oriented assessment. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). :67–73.
The paper deals with exponentially growing technology - Internet of Things (IoT) in the field of healthcare. It is spoken about the networked healthcare and medical architecture. The attention is given to the analysis of the international regulations on medical and healthcare cybersecurity. For building a trustworthy healthcare IoT solution, a developed normative hierarchical model of the international cybersecurity standards is provided. For cybersecurity assessment of such systems the case-oriented technique, which includes Advanced Security Assurance Case (ASAC) and an example on a wireless insulin pump of its application are provided.
2020-12-02
Tsurumi, R., Morita, M., Obata, H., Takano, C., Ishida, K..  2018.  Throughput Control Method Between Different TCP Variants Based on SP-MAC Over WLAN. 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). :1—2.

We have proposed the Media Access Control method based on the Synchronization Phenomena of coupled oscillators (SP-MAC) to improve a total throughput of wireless terminals connected to a Access Point. SP-MAC can avoid the collision of data frames that occur by applying Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) based on IEEE 802.11 in Wireless local area networks (WLAN). Furthermore, a new throughput guarantee control method based on SP-MAC has been proposed. This method enable each terminal not only to avoid the collision of frames but also to obtain the requested throughput by adjusting the parameters of SP-MAC. In this paper, we propose a new throughput control method that realizes the fairness among groups of terminals that use the different TCP versions, by taking the advantage of our method that is able to change acquired throughput by adjusting parameters. Moreover, we confirm the effectiveness of the proposed method by the simulation evaluation.

2018-12-10
Versluis, L., Neacsu, M., Iosup, A..  2018.  A Trace-Based Performance Study of Autoscaling Workloads of Workflows in Datacenters. 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :223–232.

To improve customer experience, datacenter operators offer support for simplifying application and resource management. For example, running workloads of workflows on behalf of customers is desirable, but requires increasingly more sophisticated autoscaling policies, that is, policies that dynamically provision resources for the customer. Although selecting and tuning autoscaling policies is a challenging task for datacenter operators, so far relatively few studies investigate the performance of autoscaling for workloads of workflows. Complementing previous knowledge, in this work we propose the first comprehensive performance study in the field. Using trace-based simulation, we compare state-of-the-art autoscaling policies across multiple application domains, workload arrival patterns (e.g., burstiness), and system utilization levels. We further investigate the interplay between autoscaling and regular allocation policies, and the complexity cost of autoscaling. Our quantitative study focuses not only on traditional performance metrics and on state-of-the-art elasticity metrics, but also on time-and memory-related autoscaling-complexity metrics. Our main results give strong and quantitative evidence about previously unreported operational behavior, for example, that autoscaling policies perform differently across application domains and allocation and provisioning policies should be co-designed.

2019-09-26
Yoshikawa, M., Ikezaki, Y., Nozaki, Y..  2018.  Implementation of Searchable Encryption System with Dedicated Hardware and Its Evaluation. 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :218-221.
Recently, big data and artificial intelligence (AI) have been introduced into medical services. When personal information is stored in a shared database, that data must be encrypted, which, in turn, makes it difficult to extract only the necessary information. Searchable encryption has now been proposed to extract, or search, encrypted data without decrypting it. However, all previous studies regarding searchable encryption are software-based. This paper proposes a searchable encryption system embedded in dedicated hardware and evaluates its circuit size.
2021-04-08
Igbe, O., Saadawi, T..  2018.  Insider Threat Detection using an Artificial Immune system Algorithm. 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :297—302.
Insider threats result from legitimate users abusing their privileges, causing tremendous damage or losses. Malicious insiders can be the main threats to an organization. This paper presents an anomaly detection system for detecting insider threat activities in an organization using an ensemble that consists of negative selection algorithms (NSA). The proposed system classifies a selected user activity into either of two classes: "normal" or "malicious." The effectiveness of our proposed detection system is evaluated using case studies from the computer emergency response team (CERT) synthetic insider threat dataset. Our results show that the proposed method is very effective in detecting insider threats.
2019-02-13
Dessouky, G., Abera, T., Ibrahim, A., Sadeghi, A..  2018.  LiteHAX: Lightweight Hardware-Assisted Attestation of Program Execution. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–8.

Unlike traditional processors, embedded Internet of Things (IoT) devices lack resources to incorporate protection against modern sophisticated attacks resulting in critical consequences. Remote attestation (RA) is a security service to establish trust in the integrity of a remote device. While conventional RA is static and limited to detecting malicious modification to software binaries at load-time, recent research has made progress towards runtime attestation, such as attesting the control flow of an executing program. However, existing control-flow attestation schemes are inefficient and vulnerable to sophisticated data-oriented programming (DOP) attacks subvert these schemes and keep the control flow of the code intact. In this paper, we present LiteHAX, an efficient hardware-assisted remote attestation scheme for RISC-based embedded devices that enables detecting both control-flow attacks as well as DOP attacks. LiteHAX continuously tracks both the control-flow and data-flow events of a program executing on a remote device and reports them to a trusted verifying party. We implemented and evaluated LiteHAX on a RISC-V System-on-Chip (SoC) and show that it has minimal performance and area overhead.

2020-10-16
Ingale, Alpana A., Moon, Sunil K..  2018.  E-Government Documents Authentication and Security by Utilizing Video Crypto-Steganography. 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN). :141—145.

In our daily lives, the advances of new technology can be used to sustain the development of people across the globe. Particularly, e-government can be the dynamo of the development for the people. The development of technology and the rapid growth in the use of internet creates a big challenge in the administration in both the public and the private sector. E-government is a vital accomplishment, whereas the security is the main downside which occurs in each e-government process. E-government has to be secure as technology grows and the users have to follow the procedures to make their own transactions safe. This paper tackles the challenges and obstacles to enhance the security of information in e-government. Hence to achieve security data hiding techniques are found to be trustworthy. Reversible data hiding (RDH) is an emerging technique which helps in retaining the quality of the cover image. Hence it is preferred over the traditional data hiding techniques. Modification in the existing algorithm is performed for image encryption scheme and data hiding scheme in order to improve the results. To achieve this secret data is split into 20 parts and data concealing is performed on each part. The data hiding procedure includes embedding of data into least significant nibble of the cover image. The bits are further equally distributed in the cover image to obtain the key security parameters. Hence the obtained results validate that the proposed scheme is better than the existing schemes.

2019-04-01
Xu, L., Chen, L., Gao, Z., Chang, Y., Iakovou, E., Shi, W..  2018.  Binding the Physical and Cyber Worlds: A Blockchain Approach for Cargo Supply Chain Security Enhancement. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.

Maritime transportation plays a critical role for the U.S. and global economies, and has evolved into a complex system that involves a plethora of supply chain stakeholders spread around the globe. The inherent complexity brings huge security challenges including cargo loss and high burdens in cargo inspection against illicit activities and potential terrorist attacks. The emerging blockchain technology provides a promising tool to build a unified maritime cargo tracking system critical for cargo security. However, most existing efforts focus on transportation data itself, while ignoring how to bind the physical cargo movements and information managed by the system consistently. This can severely undermine the effectiveness of securing cargo transportation. To fulfill this gap, we propose a binding scheme leveraging a novel digital identity management mechanism. The digital identity management mechanism maps the best practice in the physical world to the cyber world and can be seamlessly integrated with a blockchain-based cargo management system.

2021-10-21
Xu, Lei, Chen, Lin, Gao, Zhimin, Chang, Yanling, Iakovou, Eleftherios, Shi, Weidong.  2018.  Binding the Physical and Cyber Worlds: A Blockchain Approach for Cargo Supply Chain Security Enhancement. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1-5.
Maritime transportation plays a critical role for the U.S. and global economies, and has evolved into a complex system that involves a plethora of supply chain stakeholders spread around the globe. The inherent complexity brings huge security challenges including cargo loss and high burdens in cargo inspection against illicit activities and potential terrorist attacks. The emerging blockchain technology provides a promising tool to build a unified maritime cargo tracking system critical for cargo security. However, most existing efforts focus on transportation data itself, while ignoring how to bind the physical cargo movements and information managed by the system consistently. This can severely undermine the effectiveness of securing cargo transportation. To fulfill this gap, we propose a binding scheme leveraging a novel digital identity management mechanism. The digital identity management mechanism maps the best practice in the physical world to the cyber world and can be seamlessly integrated with a blockchain-based cargo management system.
2019-03-25
Ferres, E., Immler, V., Utz, A., Stanitzki, A., Lerch, R., Kokozinski, R..  2018.  Capacitive Multi-Channel Security Sensor IC for Tamper-Resistant Enclosures. 2018 IEEE SENSORS. :1–4.
Physical attacks are a serious threat for embedded devices. Since these attacks are based on physical interaction, sensing technology is a key aspect in detecting them. For highest security levels devices in need of protection are placed into tamper-resistant enclosures. In this paper we present a capacitive multi-channel security sensor IC in a 350 nm CMOS technology. This IC measures more than 128 capacitive sensor nodes of such an enclosure with an SNR of 94.6 dB across a 16×16 electrode matrix in just 19.7 ms. The theoretical sensitivity is 35 aF which is practically limited by noise to 460 aF. While this is similar to capacitive touch technology, it outperforms available solutions of this domain with respect to precision and speed.
2019-09-26
Berrueta, Eduardo, Morato, Daniel, Magana, Eduardo, Izal, Mikel.  2018.  Ransomware Encrypted Your Files but You Restored Them from Network Traffic. 2018 2nd Cyber Security in Networking Conference (CSNet). :1-7.

In a scenario where user files are stored in a network shared volume, a single computer infected by ransomware could encrypt the whole set of shared files, with a large impact on user productivity. On the other hand, medium and large companies maintain hardware or software probes that monitor the traffic in critical network links, in order to evaluate service performance, detect security breaches, account for network or service usage, etc. In this paper we suggest using the monitoring capabilities in one of these tools in order to keep a trace of the traffic between the users and the file server. Once the ransomware is detected, the lost files can be recovered from the traffic trace. This includes any user modifications posterior to the last snapshot of periodic backups. The paper explains the problems faced by the monitoring tool, which is neither the client nor the server of the file sharing operations. It also describes the data structures in order to process the actions of users that could be simultaneously working on the same file. A proof of concept software implementation was capable of successfully recovering the files encrypted by 18 different ransomware families.

2019-05-09
Ivanov, A. V., Sklyarov, V. A..  2018.  The Urgency of the Threats of Attacks on Interfaces and Field-Layer Protocols in Industrial Control Systems. 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). :162-165.

The paper is devoted to analysis of condition of executing devices and sensors of Industrial Control Systems information security. The work contains structures of industrial control systems divided into groups depending on system's layer. The article contains the analysis of analog interfaces work and work features of data transmission protocols in industrial control system field layer. Questions about relevance of industrial control systems information security, both from the point of view of the information security occurring incidents, and from the point of view of regulators' reaction in the form of normative legal acts, are described. During the analysis of the information security systems of industrial control systems a possibility of leakage through technical channels of information leakage at the field layer was found. Potential vectors of the attacks on devices of field layer and data transmission network of an industrial control system are outlined in the article. The relevance analysis of the threats connected with the attacks at the field layer of an industrial control system is carried out, feature of this layer and attractiveness of this kind of attacks is observed.

2019-03-15
Hossain, F. S., Shintani, M., Inoue, M., Orailoglu, A..  2018.  Variation-Aware Hardware Trojan Detection through Power Side-Channel. 2018 IEEE International Test Conference (ITC). :1-10.

A hardware Trojan (HT) denotes the malicious addition or modification of circuit elements. The purpose of this work is to improve the HT detection sensitivity in ICs using power side-channel analysis. This paper presents three detection techniques in power based side-channel analysis by increasing Trojan-to-circuit power consumption and reducing the variation effect in the detection threshold. Incorporating the three proposed methods has demonstrated that a realistic fine-grain circuit partitioning and an improved pattern set to increase HT activation chances can magnify Trojan detectability.

2019-01-21
Venkatesan, S., Sugrim, S., Izmailov, R., Chiang, C. J., Chadha, R., Doshi, B., Hoffman, B., Newcomb, E. Allison, Buchler, N..  2018.  On Detecting Manifestation of Adversary Characteristics. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :431–437.

Adversaries are conducting attack campaigns with increasing levels of sophistication. Additionally, with the prevalence of out-of-the-box toolkits that simplify attack operations during different stages of an attack campaign, multiple new adversaries and attack groups have appeared over the past decade. Characterizing the behavior and the modus operandi of different adversaries is critical in identifying the appropriate security maneuver to detect and mitigate the impact of an ongoing attack. To this end, in this paper, we study two characteristics of an adversary: Risk-averseness and Experience level. Risk-averse adversaries are more cautious during their campaign while fledgling adversaries do not wait to develop adequate expertise and knowledge before launching attack campaigns. One manifestation of these characteristics is through the adversary's choice and usage of attack tools. To detect these characteristics, we present multi-level machine learning (ML) models that use network data generated while under attack by different attack tools and usage patterns. In particular, for risk-averseness, we considered different configurations for scanning tools and trained the models in a testbed environment. The resulting model was used to predict the cautiousness of different red teams that participated in the Cyber Shield ‘16 exercise. The predictions matched the expected behavior of the red teams. For Experience level, we considered publicly-available remote access tools and usage patterns. We developed a Markov model to simulate usage patterns of attackers with different levels of expertise and through experiments on CyberVAN, we showed that the ML model has a high accuracy.

2020-10-16
Tungela, Nomawethu, Mutudi, Maria, Iyamu, Tiko.  2018.  The Roles of E-Government in Healthcare from the Perspective of Structuration Theory. 2018 Open Innovations Conference (OI). :332—338.

The e-government concept and healthcare have usually been studied separately. Even when and where both e-government and healthcare systems were combined in a study, the roles of e-government in healthcare have not been examined. As a result., the complementarity of the systems poses potential challenges. The interpretive approach was applied in this study. Existing materials in the areas of healthcare and e-government were used as data from a qualitative method viewpoint. Dimension of change from the perspective of the structuration theory was employed to guide the data analysis. From the analysis., six factors were found to be the main roles of e-government in the implementation and application of e-health in the delivering of healthcare services. An understanding of the roles of e-government promotes complementarity., which enhances the healthcare service delivery to the community.

2020-01-02
Jung, Byungho, Kim, Taeguen, Im, Eul Gyu.  2018.  Malware Classification Using Byte Sequence Information. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems. :143–148.

The number of new malware and new malware variants have been increasing continuously. Security experts analyze malware to capture the malicious properties of malware and to generate signatures or detection rules, but the analysis overheads keep increasing with the increasing number of malware. To analyze a large amount of malware, various kinds of automatic analysis methods are in need. Recently, deep learning techniques such as convolutional neural network (CNN) and recurrent neural network (RNN) have been applied for malware classifications. The features used in the previous approches are mostly based on API (Application Programming Interface) information, and the API invocation information can be obtained through dynamic analysis. However, the invocation information may not reflect malicious behaviors of malware because malware developers use various analysis avoidance techniques. Therefore, deep learning-based malware analysis using other features still need to be developed to improve malware analysis performance. In this paper, we propose a malware classification method using the deep learning algorithm based on byte information. Our proposed method uses images generated from malware byte information that can reflect malware behavioral context, and the convolutional neural network-based sentence analysis is used to process the generated images. We performed several experiments to show the effecitveness of our proposed method, and the experimental results show that our method showed higher accuracy than the naive CNN model, and the detection accuracy was about 99%.

2019-03-15
Inoue, T., Hasegawa, K., Kobayashi, Y., Yanagisawa, M., Togawa, N..  2018.  Designing Subspecies of Hardware Trojans and Their Detection Using Neural Network Approach. 2018 IEEE 8th International Conference on Consumer Electronics - Berlin (ICCE-Berlin). :1-4.

Due to the recent technological development, home appliances and electric devices are equipped with high-performance hardware device. Since demand of hardware devices is increased, production base become internationalized to mass-produce hardware devices with low cost and hardware vendors outsource their products to third-party vendors. Accordingly, malicious third-party vendors can easily insert malfunctions (also known as "hardware Trojans'') into their products. In this paper, we design six kinds of hardware Trojans at a gate-level netlist, and apply a neural-network (NN) based hardware-Trojan detection method to them. The designed hardware Trojans are different in trigger circuits. In addition, we insert them to normal circuits, and detect hardware Trojans using a machine-learning-based hardware-Trojan detection method with neural networks. In our experiment, we learned Trojan-infected benchmarks using NN, and performed cross validation to evaluate the learned NN. The experimental results demonstrate that the average TPR (True Positive Rate) becomes 72.9%, the average TNR (True Negative Rate) becomes 90.0%.

2017-10-27
Jonathon Martin, Ian Hiskens.  2017.  Corrective Model-Predictive Control in Large Electric Power Systems. IEEE Transactions on Power Systems.
Enhanced control capabilities are required to coordinate the response of increasingly diverse controllable resources, including FACTS devices, energy storage, demand response and fast-acting generation. Model-predictive control (MPC) has shown great promise for accommodating these devices in a corrective control framework that exploits the thermal overload capability of transmission lines and limits detrimental effects of contingencies. This work expands upon earlier implementations by incorporating voltage magnitudes and reactive power into the system model utilized by MPC. These improvements provide a more accurate prediction of system behavior and enable more effective control decisions. Performance of this enhanced MPC strategy is demonstrated using a model of the Californian power system containing 4259 buses. Sparsity in modelling and control actions must be exploited for implementation on large networks. A method is developed for identifying the set of controls that is most effective for a given contingency. The proposed MPC corrective control algorithm fits naturally within energy management systems where it can provide feedback control or act as a guide for system operators by identifying beneficial control actions across a wide range of devices.
Suli Zou, Zhongjing Ma, Xiangdong Liu, Ian Hiskens.  2017.  An Efficient Game for Coordinating Electric Vehicle Charging. IEEE Transactions on Automatic Control.
A novel class of auction-based games is formulated to study coordination problems arising from charging a population of electric vehicles (EVs) over a finite horizon. To compete for energy allocation over the horizon, each individual EV submits a multidimensional bid, with the dimension equal to two times the number of time-steps in the horizon. Use of the progressive second price (PSP) auction mechanism ensures that incentive compatibility holds for the auction games. However, due to the cross elasticity of EVs over the charging horizon, the marginal valuation of an individual EV at a particular time is determined by both the demand at that time and the total demand over the entire horizon. This difficulty is addressed by partitioning the allowable set of bid profiles based on the total desired energy over the entire horizon. It is shown that the efficient bid profile over the charging horizon is a Nash equilibrium of the underlying auction game. An update mechanism for the auction game is designed. A numerical example demonstrates that the auction process converges to an efficient Nash equilibrium. The auction-based charging coordination scheme is adapted to a receding horizon formulation to account for disturbances and forecast uncertainty.