Biblio
Steganography is the art of the hidden data in such a way that it detection of hidden knowledge prevents. As the necessity of security and privacy increases, the need of the hiding secret data is ongoing. In this paper proposed an enhanced detection of the 1-2-4 LSB steganography and RSA cryptography in Gray Scale and Color images. For color images, we apply 1-2-4 LSB on component of the RGB, then encrypt information applying RSA technique. For Gray Images, we use LSB to then encrypt information and also detect edges of gray image. In the experimental outcomes, calculate PSNR and MSE. We calculate peak signal noise ratio for quality and brightness. This method makes sure that the information has been encrypted before hiding it into an input image. If in any case the cipher text got revealed from the input image, the middle person other than receiver can't access the information as it is in encrypted form.
Due to the noise in the images, the edges extracted from these noisy images are always discontinuous and inaccurate by traditional operators. In order to solve these problems, this paper proposes multi-direction edge detection operator to detect edges from noisy images. The new operator is designed by introducing the shear transformation into the traditional operator. On the one hand, the shear transformation can provide a more favorable treatment for directions, which can make the new operator detect edges in different directions and overcome the directional limitation in the traditional operator. On the other hand, all the single pixel edge images in different directions can be fused. In this case, the edge information can complement each other. The experimental results indicate that the new operator is superior to the traditional ones in terms of the effectiveness of edge detection and the ability of noise rejection.
Globalization of semiconductor design, manufacturing, packaging and testing has led to several security issues like over production of chips, shipping of faulty or partially functional chips, intellectual property infringement, cloning, counterfeit chips and insertion of hardware trojans in design house or at foundry etc. Adversaries will extract chips from obsolete PCB's and release used parts as new chips into the supply chain. The faulty chips or partially functioning chips can enter supply chain from untrusted Assembly Packaging and Test (APT) centers. These counterfeit parts are not reliable and cause catastrophic consequences in critical applications. To mitigate the counterfeits entering supply chain, to protect the Intellectual Property (IP) rights of owners and to meter the chip, Secure Split Test (SST) is a promising solution. CSST (Connecticut SST) is an improvement to SST, which simplifies the communication required between ATP center and design house. CSST addresses the scan tests, but it does not address the functional testing of chips. The functional testing of chips during production testing is critical in weeding out faulty chips in recent times. In this paper, we present a method called PUF-SST (Physical Unclonable Function – SST) to perform both scan tests and functional tests without compromising on security features described in CSST.
Non-intrusive load monitoring (NILM) extracts information about how energy is being used in a building from electricity measurements collected at a single location. Obtaining measurements at only one location is attractive because it is inexpensive and convenient, but it can result in large amounts of data from high frequency electrical measurements. Different ways to compress or selectively measure this data are therefore required for practical implementations of NILM. We explore the use of random filtering and random demodulation, techniques that are closely related to compressed sensing, to offer a computationally simple way of compressing the electrical data. We show how these techniques can allow one to reduce the sampling rate of the electricity measurements, while requiring only one sampling channel and allowing accurate NILM performance. Our tests are performed using real measurements of electrical signals from a public data set, thus demonstrating their effectiveness on real appliances and allowing for reproducibility and comparison with other data management strategies for NILM.
The enormous size of video data of natural scene and objects is a practical threat to storage, transmission. The efficient handling of video data essentially requires compression for economic utilization of storage space, access time and the available network bandwidth of the public channel. In addition, the protection of important video is of utmost importance so as to save it from malicious intervention, attack or alteration by unauthorized users. Therefore, security and privacy has become an important issue. Since from past few years, number of researchers concentrate on how to develop efficient video encryption for secure video transmission, a large number of multimedia encryption schemes have been proposed in the literature like selective encryption, complete encryption and entropy coding based encryption. Among above three kinds of algorithms, they all remain some kind of shortcomings. In this paper, we have proposed a lightweight selective encryption algorithm for video conference which is based on efficient XOR operation and symmetric hierarchical encryption, successfully overcoming the weakness of complete encryption while offering a better security. The proposed algorithm guarantees security, fastness and error tolerance without increasing the video size.
With the growing observed success of big data use, many challenges appeared. Timeless, scalability and privacy are the main problems that researchers attempt to figure out. Privacy preserving is now a highly active domain of research, many works and concepts had seen the light within this theme. One of these concepts is the de-identification techniques. De-identification is a specific area that consists of finding and removing sensitive information either by replacing it, encrypting it or adding a noise to it using several techniques such as cryptography and data mining. In this report, we present a new model of de-identification of textual data using a specific Immune System algorithm known as CLONALG.
Cryptography and steganography are the two major fields available for data security. While cryptography is a technique in which the information is scrambled in an unintelligent gibberish fashion during transmission, steganography focuses on concealing the existence of the information. Combining both domains gives a higher level of security in which even if the use of covert channel is revealed, the true information will not be exposed. This paper focuses on concealing multiple secret images in a single 24-bit cover image using LSB substitution based image steganography. Each secret image is encrypted before hiding in the cover image using Arnold Transform. Results reveal that the proposed method successfully secures the high capacity data keeping the visual quality of transmitted image satisfactory.
Continuous Authentication by analysing the user's behaviour profile on the computer input devices is challenging due to limited information, variability of data and the sparse nature of the information. As a result, most of the previous research was done as a periodic authentication, where the analysis was made based on a fixed number of actions or fixed time period. Also, the experimental data was obtained for most of the previous research in a very controlled condition, where the task and environment were fixed. In this paper, we will focus on actual continuous authentication that reacts on every single action performed by the user. The experimental data was collected in a complete uncontrolled condition from 52 users by using our data collection software. In our analysis, we have considered both keystroke and mouse usages behaviour pattern to avoid a situation where an attacker avoids detection by restricting to one input device because the continuous authentication system only checks the other input device. The result we have obtained from this research is satisfactory enough for further investigation on this domain.
The security of cyber-physical systems is of paramount importance because of their pervasiveness in the critical infrastructure. Protecting cyber-physical systems greatly depends on a deep understanding of the possible attacks and their properties. The prerequisite for quantitative and qualitative analyses of attacks is a knowledge base containing attack descriptions. The structure of the attack descriptions is the indispensable foundation of the knowledge base.
This paper introduces the Cyber-Physical Attack Description Language (CP-ADL), which lays a cornerstone for the structured description of attacks on cyber-physical systems. The core of the language is a taxonomy of attacks on cyber-physical systems. The taxonomy specifies the semantically distinct aspects of attacks on cyber-physical systems that should be described. CP-ADL extends the taxonomy with the means to describe relationships between semantically distinct aspects, despite the complex relationships that exist for attacks on cyber-physical systems. The language is capable of expressing relationships between attack descriptions, including the links between attack steps and the folding of attack details.
The majority of applications use a prompt for a username and password. Passwords are recommended to be unique, long, complex, alphanumeric and non-repetitive. These reasons that make passwords secure may prove to be a point of weakness. The complexity of the password provides a challenge for a user and they may choose to record it. This compromises the security of the password and takes away its advantage. An alternate method of security is Keystroke Biometrics. This approach uses the natural typing pattern of a user for authentication. This paper proposes a new method for reducing error rates and creating a robust technique. The new method makes use of multiple sensors to obtain information about a user. An artificial neural network is used to model a user's behavior as well as for retraining the system. An alternate user verification mechanism is used in case a user is unable to match their typing pattern.
The number of detected and analyzed Advanced Persistent Threat (APT) campaigns increased over the last years. Two of the main objectives of such campaigns are to maintain long-term access to the environment of the target and to stay undetected. To achieve these goals the attackers use sophisticated and customized techniques for the lateral movement, to ensure that these activities are not detected by existing security systems. During an investigation of an APT campaign all stages of it are relevant to clarify important details like the initial infection vector or the compromised systems and credentials. Most of the currently used approaches, which are utilized within security systems, are not able to detect the different stages of a complex attack and therefore a comprehensive security investigation is needed. In this paper we describe a concept for a Security Investigation Framework (SIF) that supports the analysis and the tracing of multi-stage APTs. The concept includes different automatic and semi-automatic approaches that support the investigation of such attacks. Furthermore, the framework leverages different information sources, like log files and details from forensic investigations and malware analyses, to give a comprehensive overview of the different stages of an attack. The overall objective of the SIF is to improve the efficiency of investigations and reveal undetected details of an attack.
The Polish Power System is becoming increasingly more dependent on Information and Communication Technologies which results in its exposure to cyberattacks, including the evolved and highly sophisticated threats such as Advanced Persistent Threats or Distributed Denial of Service attacks. The most exposed components are SCADA systems in substations and Distributed Control Systems in power plants. When addressing this situation the usual cyber security technologies are prerequisite, but not sufficient. With the rapidly evolving cyber threat landscape the use of partnerships and information sharing has become critical. However due to several anonymity concerns the relevant stakeholders may become reluctant to exchange sensitive information about security incidents. In the paper a multi-agent architecture is presented for the Polish Power System which addresses the anonymity concerns.
RFID-enabled product supply chain visibility is usually implemented by building up a view of the product history of its activities starting from manufacturing or even earlier with a dynamically updated e-pedigree for track-and-trace, which is examined and authenticated at each node of the supply chain for data consistence with the pre-defined one. However, while effectively reducing the risk of fakes, this visibility can't guarantee that the product is authentic without taking further security measures. To the best of our knowledge, this requires deeper understandings on associations of object events with the counterfeiting activities, which is unfortunately left blank. In this paper, the taxonomy of counterfeiting possibilities is initially developed and analyzed, the structure of EPC-based events is then re-examined, and an object-centric coding mechanism is proposed to construct the object-based event “pedigree” for such event exception detection and inference. On this basis, the system architecture framework to achieve the objectivity of object event visibility for anti-counterfeiting is presented, which is also applicable to other aspects of supply chain management.
The C preprocessor has received strong criticism in academia, among others regarding separation of concerns, error proneness, and code obfuscation, but is widely used in practice. Many (mostly academic) alternatives to the preprocessor exist, but have not been adopted in practice. Since developers continue to use the preprocessor despite all criticism and research, we ask how practitioners perceive the C preprocessor. We performed interviews with 40 developers, used grounded theory to analyze the data, and cross-validated the results with data from a survey among 202 developers, repository mining, and results from previous studies. In particular, we investigated four research questions related to why the preprocessor is still widely used in practice, common problems, alternatives, and the impact of undisciplined annotations. Our study shows that developers are aware of the criticism the C preprocessor receives, but use it nonetheless, mainly for portability and variability. Many developers indicate that they regularly face preprocessor-related problems and preprocessor-related bugs. The majority of our interviewees do not see any current C-native technologies that can entirely replace the C preprocessor. However, developers tend to mitigate problems with guidelines, but those guidelines are not enforced consistently. We report the key insights gained from our study and discuss implications for practitioners and researchers on how to better use the C preprocessor to minimize its negative impact.
The rate at which cyber-attacks are increasing globally portrays a terrifying picture upfront. The main dynamics of such attacks could be studied in terms of the actions of attackers and defenders in a cyber-security game. However currently little research has taken place to study such interactions. In this paper we use behavioral game theory and try to investigate the role of certain actions taken by attackers and defenders in a simulated cyber-attack scenario of defacing a website. We choose a Reinforcement Learning (RL) model to represent a simulated attacker and a defender in a 2×4 cyber-security game where each of the 2 players could take up to 4 actions. A pair of model participants were computationally simulated across 1000 simulations where each pair played at most 30 rounds in the game. The goal of the attacker was to deface the website and the goal of the defender was to prevent the attacker from doing so. Our results show that the actions taken by both the attackers and defenders are a function of attention paid by these roles to their recently obtained outcomes. It was observed that if attacker pays more attention to recent outcomes then he is more likely to perform attack actions. We discuss the implication of our results on the evolution of dynamics between attackers and defenders in cyber-security games.
Information and Communications Technologies (ICTs), especially the Internet, have become a key enabler for government organisations, businesses and individuals. With increasing growth in the adoption and use of ICT devices such as smart phones, personal computers and the Internet, Cybersecurity is one of the key concerns facing modern organisations in both developed and developing countries. This paper presents an overview of cybersecurity challenges in Bhutan, within the context that the nation is emerging as an ICT developing country. This study examines the cybersecurity incidents reported both in national media and government reports, identification and analysis of different types of cyber threats, understanding of the characteristics and motives behind cyber-attacks, and their frequency of occurrence since 1999. A discussion on an ongoing research study to investigate cybersecurity management and practices for Bhutan's government organisations is also highlighted.
A database is a vast collection of data which helps us to collect, retrieve, organize and manage the data in an efficient and effective manner. Databases are critical assets. They store client details, financial information, personal files, company secrets and other data necessary for business. Today people are depending more on the corporate data for decision making, management of customer service and supply chain management etc. Any loss, corrupted data or unavailability of data may seriously affect its performance. The database security should provide protected access to the contents of a database and should preserve the integrity, availability, consistency, and quality of the data This paper describes the architecture based on placing the Elliptical curve cryptography module inside database management software (DBMS), just above the database cache. Using this method only selected part of the database can be encrypted instead of the whole database. This architecture allows us to achieve very strong data security using ECC and increase performance using cache.
The energy sector has been actively looking into cyber risk assessment at a global level, as it has a ripple effect; risk taken at one step in supply chain has an impact on all the other nodes. Cyber-attacks not only hinder functional operations in an organization but also waves damaging effects to the reputation and confidence among shareholders resulting in financial losses. Organizations that are open to the idea of protecting their assets and information flow and are equipped; enough to respond quickly to any cyber incident are the ones who prevail longer in global market. As a contribution we put forward a modular plan to mitigate or reduce cyber risks in global supply chain by identifying potential cyber threats at each step and identifying their immediate counterm easures.
Today ICT networks are the economy's vital backbone. While their complexity continuously evolves, sophisticated and targeted cyber attacks such as Advanced Persistent Threats (APTs) become increasingly fatal for organizations. Numerous highly developed Intrusion Detection Systems (IDSs) promise to detect certain characteristics of APTs, but no mechanism which allows to rate, compare and evaluate them with respect to specific customer infrastructures is currently available. In this paper, we present BAESE, a system which enables vendor independent and objective rating and comparison of IDSs based on small sets of customer network data.
In the era of Cloud and Social Networks, mobile devices exhibit much more powerful abilities for big media data storage and sharing. However, many users are still reluctant to share/store their data via clouds due to the potential leakage of confidential or private information. Although some cloud services provide storage encryption and access protection, privacy risks are still high since the protection is not always adequately conducted from end-to-end. Most customers are aware of the danger of letting data control out of their hands, e.g., Storing them to YouTube, Flickr, Facebook, Google+. Because of substantial practical and business needs, existing cloud services are restricted to the desired formats, e.g., Video and photo, without allowing arbitrary encrypted data. In this paper, we propose a format-compliant end-to-end privacy-preserving scheme for media sharing/storage issues with considerations for big data, clouds, and mobility. To realize efficient encryption for big media data, we jointly achieve format-compliant, compression-independent and correlation-preserving via multi-channel chained solutions under the guideline of Markov cipher. The encryption and decryption process is integrated into an image/video filter via GPU Shader for display-to-display full encryption. The proposed scheme makes big media data sharing/storage safer and easier in the clouds.
The speedy advancement in computer hardware has caused data encryption to no longer be a 100% safe solution for secure communications. To battle with adversaries, a countermeasure is to avoid message routing through certain insecure areas, e.g., Malicious countries and nodes. To this end, avoidance routing has been proposed over the past few years. However, the existing avoidance protocols are single-path-based, which means that there must be a safe path such that no adversary is in the proximity of the whole path. This condition is difficult to satisfy. As a result, routing opportunities based on the existing avoidance schemes are limited. To tackle this issue, we propose an avoidance routing framework, namely Multi-Path Avoidance Routing (MPAR). In our approach, a source node first encodes a message into k different pieces, and each piece is sent via k different paths. The destination can assemble the original message easily, while an adversary cannot recover the original message unless she obtains all the pieces. We prove that the coding scheme achieves perfect secrecy against eavesdropping under the condition that an adversary has incomplete information regarding the message. The simulation results validate that the proposed MPAR protocol achieves its design goals.
In the Internet-of-Things (IoT), users might share part of their data with different IoT prosumers, which offer applications or services. Within this open environment, the existence of an adversary introduces security risks. These can be related, for instance, to the theft of user data, and they vary depending on the security controls that each IoT prosumer has put in place. To minimize such risks, users might seek an “optimal” set of prosumers. However, assuming the adversary has the same information as the users about the existing security measures, he can then devise which prosumers will be preferable (e.g., with the highest security levels) and attack them more intensively. This paper proposes a decision-support approach that minimizes security risks in the above scenario. We propose a non-cooperative, two-player game entitled Prosumers Selection Game (PSG). The Nash Equilibria of PSG determine subsets of prosumers that optimize users' payoffs. We refer to any game solution as the Nash Prosumers Selection (NPS), which is a vector of probabilities over subsets of prosumers. We show that when using NPS, a user faces the least expected damages. Additionally, we show that according to NPS every prosumer, even the least secure one, is selected with some non-zero probability. We have also performed simulations to compare NPS against two different heuristic selection algorithms. The former is proven to be approximately 38% more effective in terms of security-risk mitigation.