Biblio

Found 5938 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2022-07-15
Hua, Yi, Li, Zhangbing, Sheng, Hankang, Wang, Baichuan.  2021.  A Method for Finding Quasi-identifier of Single Structured Relational Data. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :93—98.
Quasi-identifier is an attribute combined with other attributes to identify specific tuples or partial tuples. Improper selection of quasi-identifiers will lead to the failure of current privacy protection anonymization technology. Therefore, in this paper, we propose a method to solve single structured relational data quasi-identifiers based on functional dependency and determines the attribute classification standard. Firstly, the solution scope of quasi-identifier is determined to be all attributes except identity attributes and critical attributes. Secondly, the real data set is used to evaluate the dependency relationship between the indefinite attribute subset and the identity attribute to solve the quasi-identifiers set. Finally, we propose an algorithm to find all quasi-identifiers and experiment on real data sets of different sizes. The results show that our method can achieve better performance on the same dataset.
2022-06-09
Manoj Vignesh, K M, Sujanani, Anish, Bangalore, Raghu A..  2021.  Modelling Trust Frameworks for Network-IDS. 2021 2nd International Conference for Emerging Technology (INCET). :1–5.
Though intrusion detection systems provide actionable alerts based on signature-based or anomaly-based traffic patterns, the majority of systems still rely on human analysts to identify and contain the root cause of security incidents. This process is naturally susceptible to human error and is time-consuming, which may allow for further enumeration and pivoting within a compromised environment. Through this paper, we have augmented traditional signature-based network intrusion detection systems with a trust framework whose reduction and redemption values are a function of the severity of the incident, the degree of connectivity of nodes and the time elapsed. A lightweight implementation on the nodes coupled with a multithreaded approach on the central trust server has shown the capability to scale to larger networks with high traffic volumes and a varying proportion of suspicious traffic patterns.
2022-04-19
Srinivasan, Sudarshan, Begoli, Edmon, Mahbub, Maria, Knight, Kathryn.  2021.  Nomen Est Omen - The Role of Signatures in Ascribing Email Author Identity with Transformer Neural Networks. 2021 IEEE Security and Privacy Workshops (SPW). :291–297.
Authorship attribution, an NLP problem where anonymous text is matched to its author, has important, cross-disciplinary applications, particularly those concerning cyber-defense. Our research examines the degree of sensitivity that attention-based models have to adversarial perturbations. We ask, what is the minimal amount of change necessary to maximally confuse a transformer model? In our investigation we examine a balanced subset of emails from the Enron email dataset, calculating the performance of our model before and after email signatures have been perturbed. Results show that the model's performance changed significantly in the absence of a signature, indicating the importance of email signatures in email authorship detection. Furthermore, we show that these models rely on signatures for shorter emails much more than for longer emails. We also indicate that additional research is necessary to investigate stylometric features and adversarial training to further improve classification model robustness.
2022-08-02
Jero, Samuel, Furgala, Juliana, Pan, Runyu, Gadepalli, Phani Kishore, Clifford, Alexandra, Ye, Bite, Khazan, Roger, Ward, Bryan C., Parmer, Gabriel, Skowyra, Richard.  2021.  Practical Principle of Least Privilege for Secure Embedded Systems. 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS). :1—13.

Many embedded systems have evolved from simple bare-metal control systems to highly complex network-connected systems. These systems increasingly demand rich and feature-full operating-systems (OS) functionalities. Furthermore, the network connectedness offers attack vectors that require stronger security designs. To that end, this paper defines a prototypical RTOS API called Patina that provides services common in featurerich OSes (e.g., Linux) but absent in more trustworthy μ -kernel based systems. Examples of such services include communication channels, timers, event management, and synchronization. Two Patina implementations are presented, one on Composite and the other on seL4, each of which is designed based on the Principle of Least Privilege (PoLP) to increase system security. This paper describes how each of these μ -kernels affect the PoLP based design, as well as discusses security and performance tradeoffs in the two implementations. Results of comprehensive evaluations demonstrate that the performance of the PoLP based implementation of Patina offers comparable or superior performance to Linux, while offering heightened isolation.

2022-04-01
Neumann, Niels M. P., van Heesch, Maran P. P., Phillipson, Frank, Smallegange, Antoine A. P..  2021.  Quantum Computing for Military Applications. 2021 International Conference on Military Communication and Information Systems (ICMCIS). :1–8.
Quantum computers have the potential to outshine classical alternatives in solving specific problems, under the assumption of mature enough hardware. A specific subset of these problems relate to military applications. In this paper we consider the state-of-the-art of quantum technologies and different applications of this technology. Additionally, four use-cases of quantum computing specific for military applications are presented. These use-cases are directly in line with the 2021 AI strategic agenda of the Netherlands Ministry of Defense.
2022-08-12
Kozhemyak, Olesya A., Stukach, Oleg V..  2021.  Reducing the Root-Mean-Square Error at Signal Restoration using Discrete and Random Changes in the Sampling Rate for the Compressed Sensing Problem. 2021 International Siberian Conference on Control and Communications (SIBCON). :1—3.
The data revolution will continue in the near future and move from centralized big data to "small" datasets. This trend stimulates the emergence not only new machine learning methods but algorithms for processing data at the point of their origin. So the Compressed Sensing Problem must be investigated in some technology fields that produce the data flow for decision making in real time. In the paper, we compare the random and constant frequency deviation and highlight some circumstances where advantages of the random deviation become more obvious. Also, we propose to use the differential transformations aimed to restore a signal form by discrets of the differential spectrum of the received signal. In some cases for the investigated model, this approach has an advantage in the compress of information.
2022-06-15
Xie, Shuang, Hong, Yujie, Wang, Xiangdie, Shen, Jie.  2021.  Research on Data Security Technology Based on Blockchain Technology. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :26–31.
Blockchain started with Bitcoin, but it is higher than Bitcoin. With the deepening of applied research on blockchain technology, this new technology has brought new vitality to many industries. People admire the decentralized nature of the blockchain and hope to solve the problems caused by the operation of traditional centralized institutions in a more fair and effective way. Of course, as an emerging technology, blockchain has many areas for improvement. This article explains the blockchain technology from many aspects. Starting from the typical architecture of the blockchain, the data structure and system model of the blockchain are first introduced. Then it expounds the development of consensus algorithms and compares typical consensus algorithms. Later, the focus will be on smart contracts and their application platforms. After analyzing some of the challenges currently faced by the blockchain technology, some scenarios where the blockchain is currently developing well are listed. Finally, it summarizes and looks forward to the blockchain technology.
2021-12-20
Griffioen, Paul, Romagnoli, Raffaele, Krogh, Bruce H., Sinopoli, Bruno.  2021.  Resilient Control in the Presence of Man-in-the-Middle Attacks. 2021 American Control Conference (ACC). :4553–4560.
Cyber-physical systems, which are ubiquitous in modern critical infrastructure, oftentimes rely on sending actuation commands and sensor measurements over a network, subjecting this information to potential man-in-the-middle attacks. These attacks can take the form of denial of service attacks or integrity attacks. Previous approaches at ensuring the resiliency of the overall control system against these types of attacks have leveraged functional redundancy in the system, including resilient estimation and reconfigurable control. However, these approaches are only able to ensure resiliency up to a particular subset of the actuator commands and sensor measurements being compromised. In contrast, we introduce a resiliency mechanism in this paper that can ensure safety for the overall system when all the actuator commands and sensor measurements are compromised. In addition, this approach does not require the implementation of any detection algorithm. We leverage communication redundancy in the number of pathways across the network to guarantee safety when up to a certain percentage of those pathways are compromised. The conditions under which safety is guaranteed are presented along with the resiliency mechanism itself, and our results are illustrated via simulation.
2022-03-02
Sargolzaei, Arman.  2021.  A Secure Control Design for Networked Control System with Nonlinear Dynamics under False-Data-Injection Attacks. 2021 American Control Conference (ACC). :2693–2699.

In a centralized Networked Control System (NCS), all agents share local data with a central processing unit that generates control commands for agents. The use of a communication network between the agents gives NCSs a distinct advantage in efficiency, design cost, and simplicity. However, this benefit comes at the expense of vulnerability to a range of cyber-physical attacks. Recently, novel defense mechanisms to counteract false data injection (FDI) attacks on NCSs have been developed for agents with linear dynamics but have not been thoroughly investigated for NCSs with nonlinear dynamics. This paper proposes an FDI attack mitigation strategy for NCSs composed of agents with nonlinear dynamics under disturbances and measurement noises. The proposed algorithm uses both learning and model-based approaches to estimate agents'states for FDI attack mitigation. A neural network is used to model uncertain dynamics and estimate the effect of FDI attacks. The controller and estimator are designed based on Lyapunov stability analysis. A simulation of robots with Euler-Lagrange dynamics is considered to demonstrate the developed controller's performance to respond to FDI attacks in real-time.

2022-02-04
Iqbal, Siddiq, Sujatha, B R.  2021.  Secure Key Management Scheme With Good Resiliency For Hierarchical Network Using Combinatorial Theory. 2021 2nd International Conference for Emerging Technology (INCET). :1–7.
Combinatorial designs are powerful structures for key management in wireless sensor networks to address good connectivity and also security against external attacks in large scale networks. Symmetric key foundation is the most appropriate model for secure exchanges in WSNs among the ideal models. The core objective is to enhance and evaluate certain issues like attack on the nodes, to provide better key strength, better connectivity, security in interaction among the nodes. The keys distributed by the base station to cluster head are generated using Symmetric Balanced Incomplete Block Design (SBIBD). The keys distributed by cluster head to its member nodes are generated using Symmetric Balanced Incomplete Block Design (SBIBD) and Keys are refreshed periodically to avoid stale entries. Compromised sensor nodes can be used to insert false reports (spurious reports) in wireless sensor networks. The idea of interaction between the sensor nodes utilizing keys and building up a protected association helps in making sure the network is secure. Compared with similar existing schemes, our approach can provide better security.
2022-06-09
Ude, Okechukwu, Swar, Bobby.  2021.  Securing Remote Access Networks Using Malware Detection Tools for Industrial Control Systems. 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). :166–171.
With their role as an integral part of its infrastructure, Industrial Control Systems (ICS) are a vital part of every nation's industrial development drive. Despite several significant advancements - such as controlled-environment agriculture, automated train systems, and smart homes, achieved in critical infrastructure sectors through the integration of Information Systems (IS) and remote capabilities with ICS, the fact remains that these advancements have introduced vulnerabilities that were previously either nonexistent or negligible, one being Remote Access Trojans (RATs). Present RAT detection methods either focus on monitoring network traffic or studying event logs on host systems. This research's objective is the detection of RATs by comparing actual utilized system capacity to reported utilized system capacity. To achieve the research objective, open-source RAT detection methods were identified and analyzed, a GAP-analysis approach was used to identify the deficiencies of each method, after which control algorithms were developed into source code for the solution.
2022-01-25
Shameem Ahamed, Waheeda Syed, Zavarsky, Pavol, Swar, Bobby.  2021.  Security Audit of Docker Container Images in Cloud Architecture. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :202—207.
Containers technology radically changed the ways for packaging applications and deploying them as services in cloud environments. According to the recent report on security predictions of 2020 by Trend Micro, the vulnerabilities in container components deployed with cloud architecture have been one of the top security concerns for development and operations teams in enterprises. Docker is one of the leading container technologies that automate the deployment of applications into containers. Docker Hub is a public repository by Docker for storing and sharing the Docker images. These Docker images are pulled from the Docker Hub repository and the security of images being used from the repositories in any cloud environment could be at risk. Vulnerabilities in Docker images could have a detrimental effect on enterprise applications. In this paper, the focus is on securing the Docker images using vulnerability centric approach (VCA) to detect the vulnerabilities. A set of use cases compliant with the NIST SP 800-190 Application Container Security Guide is developed for audit compliance of Docker container images with the OWASP Container Security Verification Standards (CSVS). In this paper, firs vulnerabilities of Docker container images are identified and assessed using the VCA. Then, a set of use cases to identify presence of the vulnerabilities is developed to facilitate the security audit of the container images. Finally, it is illustrated how the proposed use cases can be mapped with the requirements of the OWASP Container Security Verification Standards. The use cases can serve as a security auditing tool during the development, deployment, and maintenance of cloud microservices applications.
2022-05-12
Morbitzer, Mathias, Proskurin, Sergej, Radev, Martin, Dorfhuber, Marko, Salas, Erick Quintanar.  2021.  SEVerity: Code Injection Attacks against Encrypted Virtual Machines. 2021 IEEE Security and Privacy Workshops (SPW). :444–455.

Modern enterprises increasingly take advantage of cloud infrastructures. Yet, outsourcing code and data into the cloud requires enterprises to trust cloud providers not to meddle with their data. To reduce the level of trust towards cloud providers, AMD has introduced Secure Encrypted Virtualization (SEV). By encrypting Virtual Machines (VMs), SEV aims to ensure data confidentiality, despite a compromised or curious Hypervisor. The SEV Encrypted State (SEV-ES) extension additionally protects the VM’s register state from unauthorized access. Yet, both extensions do not provide integrity of the VM’s memory, which has already been abused to leak the protected data or to alter the VM’s control-flow. In this paper, we introduce the SEVerity attack; a missing puzzle piece in the series of attacks against the AMD SEV family. Specifically, we abuse the system’s lack of memory integrity protection to inject and execute arbitrary code within SEV-ES-protected VMs. Contrary to previous code execution attacks against the AMD SEV family, SEVerity neither relies on a specific CPU version nor on any code gadgets inside the VM. Instead, SEVerity abuses the fact that SEV-ES prohibits direct memory access into the encrypted memory. Specifically, SEVerity injects arbitrary code into the encrypted VM through I/O channels and uses the Hypervisor to locate and trigger the execution of the encrypted payload. This allows us to sidestep the protection mechanisms of SEV-ES. Overall, our results demonstrate a success rate of 100% and hence highlight that memory integrity protection is an obligation when encrypting VMs. Consequently, our work presents the final stroke in a series of attacks against AMD SEV and SEV-ES and renders the present implementation as incapable of protecting against a curious, vulnerable, or malicious Hypervisor.

2021-12-20
Sun, Jingxue, Huang, Zhiqiu, Yang, Ting, Wang, Wengjie, Zhang, Yuqing.  2021.  A System for Detecting Third-Party Tracking through the Combination of Dynamic Analysis and Static Analysis. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
With the continuous development of Internet technology, people pay more and more attention to private security. In particular, third-party tracking is a major factor affecting privacy security. So far, the most effective way to prevent third-party tracking is to create a blacklist. However, blacklist generation and maintenance need to be carried out manually which is inefficient and difficult to maintain. In order to generate blacklists more quickly and accurately in this era of big data, this paper proposes a machine learning system MFTrackerDetector against third-party tracking. The system is based on the theory of structural hole and only detects third-party trackers. The system consists of two subsystems, DMTrackerDetector and DFTrackerDetector. DMTrackerDetector is a JavaScript-based subsystem and DFTrackerDetector is a Flash-based subsystem. Because tracking code and non-tracking code often call different APIs, DMTrackerDetector builds a classifier using all the APIs in JavaScript as features and extracts the API features in JavaScript through dynamic analysis. Unlike static analysis method, the dynamic analysis method can effectively avoid code obfuscation. DMTrackerDetector eventually generates a JavaScript-based third-party tracker list named Jlist. DFTrackerDetector constructs a classifier using all the APIs in ActionScript as features and extracts the API features in the flash script through static analysis. DFTrackerDetector finally generates a Flash-based third-party tracker list named Flist. DFTrackerDetector achieved 92.98% accuracy in the Flash test set and DMTrackerDetector achieved 90.79% accuracy in the JavaScript test set. MFTrackerDetector eventually generates a list of third-party trackers, which is a combination of Jlist and Flist.
2022-04-25
Jiang, Xiaoyu, Qiu, Tie, Zhou, Xiaobo, Zhang, Bin, Sun, Ximin, Chi, Jiancheng.  2021.  A Text Similarity-based Protocol Parsing Scheme for Industrial Internet of Things. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :781–787.
Protocol parsing is to discern and analyze packets' transmission fields, which plays an essential role in industrial security monitoring. The existing schemes parsing industrial protocols universally have problems, such as the limited parsing protocols, poor scalability, and high preliminary information requirements. This paper proposes a text similarity-based protocol parsing scheme (TPP) to identify and parse protocols for Industrial Internet of Things. TPP works in two stages, template generation and protocol parsing. In the template generation stage, TPP extracts protocol templates from protocol data packets by the cluster center extraction algorithm. The protocol templates will update continuously with the increase of the parsing packets' protocol types and quantities. In the protocol parsing phase, the protocol data packet will match the template according to the similarity measurement rules to identify and parse the fields of protocols. The similarity measurement method comprehensively measures the similarity between messages in terms of character position, sequence, and continuity to improve protocol parsing accuracy. We have implemented TPP in a smart industrial gateway and parsed more than 30 industrial protocols, including POWERLINK, DNP3, S7comm, Modbus-TCP, etc. We evaluate the performance of TPP by comparing it with the popular protocol analysis tool Netzob. The experimental results show that the accuracy of TPP is more than 20% higher than Netzob on average in industrial protocol identification and parsing.
2022-05-03
Wang, Tingting, Zhao, Xufeng, Lv, Qiujian, Hu, Bo, Sun, Degang.  2021.  Density Weighted Diversity Based Query Strategy for Active Learning. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :156—161.

Deep learning has made remarkable achievements in various domains. Active learning, which aims to reduce the budget for training a machine-learning model, is especially useful for the Deep learning tasks with the demand of a large number of labeled samples. Unfortunately, our empirical study finds that many of the active learning heuristics are not effective when applied to Deep learning models in batch settings. To tackle these limitations, we propose a density weighted diversity based query strategy (DWDS), which makes use of the geometry of the samples. Within a limited labeling budget, DWDS enhances model performance by querying labels for the new training samples with the maximum informativeness and representativeness. Furthermore, we propose a beam-search based method to obtain a good approximation to the optimum of such samples. Our experiments show that DWDS outperforms existing algorithms in Deep learning tasks.

2022-04-19
Chen, Quan, Snyder, Peter, Livshits, Ben, Kapravelos, Alexandros.  2021.  Detecting Filter List Evasion with Event-Loop-Turn Granularity JavaScript Signatures. 2021 IEEE Symposium on Security and Privacy (SP). :1715–1729.

Content blocking is an important part of a per-formant, user-serving, privacy respecting web. Current content blockers work by building trust labels over URLs. While useful, this approach has many well understood shortcomings. Attackers may avoid detection by changing URLs or domains, bundling unwanted code with benign code, or inlining code in pages.The common flaw in existing approaches is that they evaluate code based on its delivery mechanism, not its behavior. In this work we address this problem by building a system for generating signatures of the privacy-and-security relevant behavior of executed JavaScript. Our system uses as the unit of analysis each script's behavior during each turn on the JavaScript event loop. Focusing on event loop turns allows us to build highly identifying signatures for JavaScript code that are robust against code obfuscation, code bundling, URL modification, and other common evasions, as well as handle unique aspects of web applications.This work makes the following contributions to the problem of measuring and improving content blocking on the web: First, we design and implement a novel system to build per-event-loop-turn signatures of JavaScript behavior through deep instrumentation of the Blink and V8 runtimes. Second, we apply these signatures to measure how much privacy-and-security harming code is missed by current content blockers, by using EasyList and EasyPrivacy as ground truth and finding scripts that have the same privacy and security harming patterns. We build 1,995,444 signatures of privacy-and-security relevant behaviors from 11,212 unique scripts blocked by filter lists, and find 3,589 unique scripts hosting known harmful code, but missed by filter lists, affecting 12.48% of websites measured. Third, we provide a taxonomy of ways scripts avoid detection and quantify the occurrence of each. Finally, we present defenses against these evasions, in the form of filter list additions where possible, and through a proposed, signature based system in other cases.As part of this work, we share the implementation of our signature-generation system, the data gathered by applying that system to the Alexa 100K, and 586 AdBlock Plus compatible filter list rules to block instances of currently blocked code being moved to new URLs.

2021-12-21
Zhang, Pengfeng, Tian, Chuan, Shang, Tao, Liu, Lin, Li, Lei, Wang, Wenting, Zhao, Yiming.  2021.  Dynamic Access Control Technology Based on Zero-Trust Light Verification Network Model. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :712–715.
With the rise of the cloud computing and services, the network environments tend to be more complex and enormous. Security control becomes more and more hard due to the frequent and various access and requests. There are a few techniques to solve the problem which developed separately in the recent years. Network Micro-Segmentation provides the system the ability to keep different parts separated. Zero Trust Model ensures the network is access to trusted users and business by applying the policy that verify and authenticate everything. With the combination of Segmentation and Zero Trust Model, a system will obtain the ability to control the access to organizations' or industrial valuable assets. To implement the cooperation, the paper designs a strategy named light verification to help the process to be painless for the cost of inspection. The strategy was found to be effective from the perspective of the technical management, security and usability.
2022-04-19
S, Srinitha., S, Niveda., S, Rangeetha., V, Kiruthika..  2021.  A High Speed Montgomery Multiplier Used in Security Applications. 2021 3rd International Conference on Signal Processing and Communication (ICPSC). :299–303.

Security plays a major role in data transmission and reception. Providing high security is indispensable in communication systems. The RSA (Rivest-Shamir-Adleman) cryptosystem is used widely in cryptographic applications as it offers highly secured transmission. RSA cryptosystem uses Montgomery multipliers and it involves modular exponentiation process which is attained by performing repeated modular-multiplications. This leads to high latency and owing to improve the speed of multiplier, highly efficient modular multiplication methodology needs to be applied. In the conventional methodology, Carry Save Adder (CSA) is used in the multiplication and it consumes more area and it has larger delay, but in the suggested methodology, the Reverse Carry Propagate (RCP) adder is used in the place of CSA adder and the obtained output shows promising results in terms of area and latency. The simulation is done with Xilinx ISE design suite. The proposed multiplier can be used effectively in signal processing, image processing and security based applications.

2022-03-01
Chaves, Cesar G., Sepulveda, Johanna, Hollstein, Thomas.  2021.  Lightweight Monitoring Scheme for Flooding DoS Attack Detection in Multi-Tenant MPSoCs. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
The increasing use of Multiprocessor Systems-on-Chip (MPSoCs) within scalable multi-tenant systems, such as fog/cloud computing, faces the challenge of potential attacks originated by the execution of malicious tasks. Flooding Denial- of-Service (FDoS) attacks are one of the most common and powerful threats for Network-on-Chip (NoC)-based MPSoCs. Since, by overwhelming the NoC, the system is unable to forward legitimate traffic. However, the effectiveness of FDoS attacks depend on the NoC configuration. Moreover, designing a secure MPSoC capable of detecting such attacks while avoiding excessive power/energy and area costs is challenging. To this end, we present two contributions. First, we demonstrate two types of FDoS attacks: based on the packet injection rate (PIR-based FDoS) and based on the packet's payload length (PPL-based FDoS). We show that fair round-robin NoCs are intrinsically protected against PIR-based FDoS. Instead, PPL-based FDoS attacks represent a real threat to MPSoCs. Second, we propose a novel lightweight monitoring method for detecting communication disruptions. Simulation and synthesis results show the feasibility and efficiency of the presented approach.
2021-06-24
Pashchenko, Ivan, Scandariato, Riccardo, Sabetta, Antonino, Massacci, Fabio.  2021.  Secure Software Development in the Era of Fluid Multi-party Open Software and Services. 2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). :91—95.
Pushed by market forces, software development has become fast-paced. As a consequence, modern development projects are assembled from 3rd-party components. Security & privacy assurance techniques once designed for large, controlled updates over months or years, must now cope with small, continuous changes taking place within a week, and happening in sub-components that are controlled by third-party developers one might not even know they existed. In this paper, we aim to provide an overview of the current software security approaches and evaluate their appropriateness in the face of the changed nature in software development. Software security assurance could benefit by switching from a process-based to an artefact-based approach. Further, security evaluation might need to be more incremental, automated and decentralized. We believe this can be achieved by supporting mechanisms for lightweight and scalable screenings that are applicable to the entire population of software components albeit there might be a price to pay.
2022-03-25
Shi, Peng, Chen, Xuebing, Kong, Xiangying, Cao, Xianghui.  2021.  SE-IDS: A Sample Equalization Method for Intrusion Detection in Industrial Control System. 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :189—195.

With the continuous emergence of cyber attacks, the security of industrial control system (ICS) has become a hot issue in academia and industry. Intrusion detection technology plays an irreplaceable role in protecting industrial system from attacks. However, the imbalance between normal samples and attack samples seriously affects the performance of intrusion detection algorithms. This paper proposes SE-IDS, which uses generative adversarial networks (GAN) to expand the minority to make the number of normal samples and attack samples relatively balanced, adopts particle swarm optimization (PSO) to optimize the parameters of LightGBM. Finally, we evaluated the performance of the proposed model on the industrial network dataset.

Das, Indrajit, Singh, Shalini, Sarkar, Ayantika.  2021.  Serial and Parallel based Intrusion Detection System using Machine Learning. 2021 Devices for Integrated Circuit (DevIC). :340—344.

Cyberattacks have been the major concern with the growing advancement in technology. Complex security models have been developed to combat these attacks, yet none exhibit a full-proof performance. Recently, several machine learning (ML) methods have gained significant popularity in offering effective and efficient intrusion detection schemes which assist in proactive detection of multiple network intrusions, such as Denial of Service (DoS), Probe, Remote to User (R2L), User to Root attack (U2R). Multiple research works have been surveyed based on adopted ML methods (either signature-based or anomaly detection) and some of the useful observations, performance analysis and comparative study are highlighted in this paper. Among the different ML algorithms in survey, PSO-SVM algorithm has shown maximum accuracy. Using RBF-based classifier and C-means clustering algorithm, a new model i.e., combination of serial and parallel IDS is proposed in this paper. The detection rate to detect known and unknown intrusion is 99.5% and false positive rate is 1.3%. In PIDS (known intrusion classifier), the detection rate for DOS, probe, U2R and R2L is 99.7%, 98.8%, 99.4% and 98.5% and the False positive rate is 0.6%, 0.2%, 3% and 2.8% respectively. In SIDS (unknown intrusion classifier), the rate of intrusion detection is 99.1% and false positive rate is 1.62%. This proposed model has known intrusion detection accuracy similar to PSO - SVM and is better than all other models. Finally the future research directions relevant to this domain and contributions have been discussed.

2022-03-01
Salem, Heba, Topham, Nigel.  2021.  Trustworthy Computing on Untrustworthy and Trojan-Infected on-Chip Interconnects. 2021 IEEE European Test Symposium (ETS). :1–2.
This paper introduces a scheme for achieving trustworthy computing on SoCs that use an outsourced AXI interconnect for on-chip communication. This is achieved through component guarding, data tagging, event verification, and consequently responding dynamically to an attack. Experimental results confirm the ability of the proposed scheme to detect HT attacks and respond to them at run-time. The proposed scheme extends the state-of-art in trustworthy computing on untrustworthy components by focusing on the issue of an untrusted on-chip interconnect for the first time, and by developing a scheme that is independent of untrusted third-party IP.
2021-12-20
Shen, Cheng, Liu, Tian, Huang, Jun, Tan, Rui.  2021.  When LoRa Meets EMR: Electromagnetic Covert Channels Can Be Super Resilient. 2021 IEEE Symposium on Security and Privacy (SP). :1304–1317.
Due to the low power of electromagnetic radiation (EMR), EM convert channel has been widely considered as a short-range attack that can be easily mitigated by shielding. This paper overturns this common belief by demonstrating how covert EM signals leaked from typical laptops, desktops and servers are decoded from hundreds of meters away, or penetrate aggressive shield previously considered as sufficient to ensure emission security. We achieve this by designing EMLoRa – a super resilient EM covert channel that exploits memory as a LoRa-like radio. EMLoRa represents the first attempt of designing an EM covert channel using state-of-the-art spread spectrum technology. It tackles a set of unique challenges, such as handling complex spectral characteristics of EMR, tolerating signal distortions caused by CPU contention, and preventing adversarial detectors from demodulating covert signals. Experiment results show that EMLoRa boosts communication range by 20x and improves attenuation resilience by up to 53 dB when compared with prior EM covert channels at the same bit rate. By achieving this, EMLoRa allows an attacker to circumvent security perimeter, breach Faraday cage, and localize air-gapped devices in a wide area using just a small number of inexpensive sensors. To countermeasure EMLoRa, we further explore the feasibility of uncovering EMLoRa's signal using energy- and CNN-based detectors. Experiments show that both detectors suffer limited range, allowing EMLoRa to gain a significant range advantage. Our results call for further research on the countermeasure against spread spectrum-based EM covert channels.