Biblio
Filters: First Letter Of Last Name is S [Clear All Filters]
A Stealthier False Data Injection Attack against the Power Grid. 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :108—114.
.
2021. We use discrete-time adaptive control theory to design a novel false data injection (FDI) attack against automatic generation control (AGC), a critical system that maintains a power grid at its requisite frequency. FDI attacks can cause equipment damage or blackouts by falsifying measurements in the streaming sensor data used to monitor the grid's operation. Compared to prior work, the proposed attack (i) requires less knowledge on the part of the attacker, such as correctly forecasting the future demand for power; (ii) is stealthier in its ability to bypass standard methods for detecting bad sensor data and to keep the false sensor readings near historical norms until the attack is well underway; and (iii) can sustain the frequency excursion as long as needed to cause real-world damage, in spite of AGC countermeasures. We validate the performance of the proposed attack on realistic 37-bus and 118-bus setups in PowerWorld, an industry-strength power system simulator trusted by real-world operators. The results demonstrate the attack's improved stealthiness and effectiveness compared to prior work.
Towards Ethics Training in Disaster Robotics: Design and Usability Testing of a Text-Based Simulation. 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :104—109.
.
2021. Rescue robots are expected to soon become commonplace at disaster sites, where they are increasingly being deployed to provide rescuers with improved access and intervention capabilities while mitigating risks. The presence of robots in operation areas, however, is likely to carry a layer of additional ethical complexity to situations that are already ethically challenging. In addition, limited guidance is available for ethically informed, practical decision-making in real-life disaster settings, and specific ethics training programs are lacking. The contribution of this paper is thus to propose a tool aimed at supporting ethics training for rescuers operating with rescue robots. To this end, we have designed an interactive text-based simulation. The simulation was developed in Python, using Tkinter, Python's de-facto standard GUI. It is designed in accordance with the Case-Based Learning approach, a widely used instructional method that has been found to work well for ethics training. The simulation revolves around a case grounded in ethical themes we identified in previous work on ethical issues in rescue robotics: fairness and discrimination, false or excessive expectations, labor replacement, safety, and trust. Here we present the design of the simulation and the results of usability testing.
Towards Scalable Verification of Deep Reinforcement Learning. 2021 Formal Methods in Computer Aided Design (FMCAD). :193—203.
.
2021. Deep neural networks (DNNs) have gained significant popularity in recent years, becoming the state of the art in a variety of domains. In particular, deep reinforcement learning (DRL) has recently been employed to train DNNs that realize control policies for various types of real-world systems. In this work, we present the whiRL 2.0 tool, which implements a new approach for verifying complex properties of interest for DRL systems. To demonstrate the benefits of whiRL 2.0, we apply it to case studies from the communication networks domain that have recently been used to motivate formal verification of DRL systems, and which exhibit characteristics that are conducive for scalable verification. We propose techniques for performing k-induction and semi-automated invariant inference on such systems, and leverage these techniques for proving safety and liveness properties that were previously impossible to verify due to the scalability barriers of prior approaches. Furthermore, we show how our proposed techniques provide insights into the inner workings and the generalizability of DRL systems. whiRL 2.0 is publicly available online.
Towards Trustworthy NFC-based Sensor Readout for Battery Packs in Battery Management Systems. 2021 IEEE International Conference on RFID Technology and Applications (RFID-TA). :285—288.
.
2021. In the last several years, wireless Battery Management Systems (BMS) have slowly become a topic of interest from both academia and industry. It came from a necessity derived from the increased production and use in different systems, including electric vehicles. Wireless communication allows for a more flexible and cost-efficient sensor installation in battery packs. However, many wireless technologies, such as those that use the 2.4 GHz frequency band, suffer from interference limitations that need to be addressed. In this paper, we present an alternative approach to communication in BMS that relies on the use of Near Field Communication (NFC) technology for battery sensor readouts. Due to a vital concern over the counterfeited battery pack products, security measures are also considered. To this end, we propose the use of an effective and easy to integrate authentication schema that is supported by dedicated NFC devices. To test the usability of our design, a demonstrator using the targeted devices was implemented and evaluated.
Aspect-Oriented Adaptation of Access Control Rules. 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). :363–370.
.
2021. Cyber-physical systems (CPS) and IoT systems are nowadays commonly designed as self-adaptive, endowing them with the ability to dynamically reconFigure to reflect their changing environment. This adaptation concerns also the security, as one of the most important properties of these systems. Though the state of the art on adaptivity in terms of security related to these systems can often deal well with fully anticipated situations in the environment, it becomes a challenge to deal with situations that are not or only partially anticipated. This uncertainty is however omnipresent in these systems due to humans in the loop, open-endedness and only partial understanding of the processes happening in the environment. In this paper, we partially address this challenge by featuring an approach for tackling access control in face of partially unanticipated situations. We base our solution on special kind of aspects that build on existing access control system and create a second level of adaptation that addresses the partially unanticipated situations by modifying access control rules. The approach is based on our previous work where we have analyzed and classified uncertainty in security and trust in such systems and have outlined the idea of access-control related situational patterns. The aspects that we present in this paper serve as means for application-specific specialization of the situational patterns. We showcase our approach on a simplified but real-life example in the domain of Industry 4.0 that comes from one of our industrial projects.
Data Security and Privacy Preserving with Augmented Homomorphic Re-Encryption Decryption (AHRED) Algorithm in Big Data Analytics. 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :451–457.
.
2021. The process of Big data storage has become challenging due to the expansion of extensive data; data providers will offer encrypted data and upload to Big data. However, the data exchange mechanism is unable to accommodate encrypted data. Particularly when a large number of users share the scalable data, the scalability becomes extremely limited. Using a contemporary privacy protection system to solve this issue and ensure the security of encrypted data, as well as partially homomorphic re-encryption and decryption (PHRED). This scheme has the flexibility to share data by ensuring user's privacy with partially trusted Big Data. It can access to strong unforgeable scheme it make the transmuted cipher text have public and private key verification combined identity based Augmented Homomorphic Re Encryption Decryption(AHRED) on paillier crypto System with Laplacian noise filter the performance of the data provider for privacy preserving big data.
On the Design of an Information-Centric Networking Extension for IoT APIs. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–6.
.
2021. Both the Internet of Things (IoT) and Information Centric Networking (ICN) have gathered a lot of attention from both research and industry in recent years. While ICN has proved to be beneficial in many situations, it is not widely deployed outside research projects, also not addressing needs of IoT application programming interfaces (APIs). On the other hand, today's IoT solutions are built on top of the host-centric communication model associated with the usage of the Internet Protocol (IP). This paper contributes a discussion on the need of an integration of a specific form of IoT APIs, namely WebSocket based streaming APIs, into an ICN. Furthermore, different access models are discussed and requirements are derived from real world APIs. Finally, the design of an ICN-style extension is presented using one of the examined APIs.
Developing a Platform to Enable Parameter Scaling Studies in Magnetized Liner Inertial Fusion Experiments. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
.
2021. Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial fusion concept that relies on fuel magnetization, laser preheat, and a magnetically driven implosion to produce fusion conditions. In MagLIF, the target is a roughly 10 mm long, 5 mm diameter, 0.5 mm thick, cylindrical beryllium shell containing 1 mg/cm 3 D 2 gas. An axial magnetic field on the order of 10 T is applied to the target, and several kJ of laser energy is deposited into the fuel. Up to 20 MA of current is driven axially through the beryllium target, causing it to implode over approximately 100 ns. The implosion produces a 100-μm diameter, 8-mm tall fuel column with a burn-averaged ion temperature of several keV, that generates 10 11 -10 13 DD neutrons.
Developing An Extended Convolute Post To Drive An X-Pinch For Radiography At The Z Facility. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
.
2021. X-ray radiography has been used to diagnose a wide variety of experiments at the Z facility including inertial confinement fusion capsule implosions, the growth of the magneto-Rayleigh-Taylor instability in solid liners, and the development of helical structures in axially magnetized liner implosions. In these experiments, the Z Beamlet laser (1 kJ, 1 ns) was used to generate the x-ray source. An alternate x-ray source is desirable in experiments where the Z Beamlet laser is used for another purpose (e.g., preheating the fuel in magnetized liner inertial fusion experiments) or when multiple radiographic lines of sight are necessary.
Econometric Models for Estimating the Financial Effect of Cybercrimes. 2021 11th International Conference on Advanced Computer Information Technologies (ACIT). :381–384.
.
2021. Technological progress has changed our world beyond recognition. However, along with the incredible benefits and conveniences we have received new dangers and risks. Mankind is increasingly becoming hostage to information technology and cyber world. Recently, cybercrime is one of the top 10 risks to sustainable development in the world. It poses serious new challenges to global security and economy. The aim of the article is to obtain an assessment of some of the financial effects of modern IT crimes based on an analysis of the main aspects of monetary costs and the hidden economic impact of cybercrime. A multifactor regression model has been proposed to determine the contribution of the cost of the main consequences of IT incidents: business disruption, information loss, revenue loss and equipment damage caused by different types of cyberattacks worldwide in 2019 to total cost of cyberattacks. Information loss has been found to have a major impact on the total cost of cyberattacks, reducing profits and incurring additional costs for businesses. It was built a canonical model for identifying the dependence of total submission to ID ransomware, total cost of cybercrime and the main indicators of economic development for the TOP-10 countries. There is a significant correlation between two sets of indicators, in particular, it is confirmed that most cyberattacks target countries - countries with a high level of development, and the consequences of IT crimes are more significant for low-income countries.
Effects of trust in human-automation shared control: A human-in-the-loop driving simulation study. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). :1147–1154.
.
2021. Human-automation shared control is proposed to reduce the risk of driver disengagement in Level-3 autonomous vehicles. Although previous studies have approved shared control strategy is effective to keep a driver in the loop and improve the driver's performance, over- and under-trust may affect the cooperation between the driver and the automation system. This study conducted a human-in-the-loop driving simulation experiment to assess the effects of trust on driver's behavior of shared control. An expert shared control strategy with longitudinal and lateral driving assistance was proposed and implemented in the experiment platform. Based on the experiment (N=24), trust in shared control was evaluated, followed by a correlation analysis of trust and behaviors. Moderating effects of trust on the relationship between gaze focalization and minimum of time to collision were then explored. Results showed that self-reported trust in shared control could be evaluated by three subscales respectively: safety, efficiency and ease of control, which all show stronger correlations with gaze focalization than other behaviors. Besides, with more trust in ease of control, there is a gentle decrease in the human-machine conflicts of mean brake inputs. The moderating effects show trust could enhance the decrease of minimum of time to collision as eyes-off-road time increases. These results indicate over-trust in automation will lead to unsafe behaviors, particularly monitoring behavior. This study contributes to revealing the link between trust and behavior in the context of human-automation shared control. It can be applied in improving the design of shared control and reducing risky behaviors of drivers by further trust calibration.
Encryption, File Splitting and File compression Techniques for Data Security in virtualized environment. 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :480—485.
.
2021. Nowadays cloud computing has become the crucial part of IT and most important thing is information security in cloud environment. Range of users can access the facilities and use cloud according to their feasibility. Cloud computing is utilized as safe storage of information but still data security is the biggest concern, for example, secrecy, data accessibility, data integrity is considerable factor for cloud storage. Cloud service providers provide the facility to clients that they can store the data on cloud remotely and access whenever required. Due to this facility, it gets necessary to shield or cover information from unapproved access, hackers or any sort of alteration and malevolent conduct. It is inexpensive approach to store the valuable information and doesn't require any hardware and software to hold the data. it gives excellent work experience but main measure is just security. In this work security strategies have been proposed for cloud data protection, capable to overpower the shortcomings of conventional data protection algorithms and enhancing security using steganography algorithm, encryption decryption techniques, compression and file splitting technique. These techniques are utilized for effective results in data protection, Client can easily access our developed desktop application and share the information in an effective and secured way.
EssentialFP: Exposing the Essence of Browser Fingerprinting. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :32—48.
.
2021. Web pages aggressively track users for a variety of purposes from targeted advertisements to enhanced authentication. As browsers move to restrict traditional cookie-based tracking, web pages increasingly move to tracking based on browser fingerprinting. Unfortunately, the state-of-the-art to detect fingerprinting in browsers is often error-prone, resorting to imprecise heuristics and crowd-sourced filter lists. This paper presents EssentialFP, a principled approach to detecting fingerprinting on the web. We argue that the pattern of (i) gathering information from a wide browser API surface (multiple browser-specific sources) and (ii) communicating the information to the network (network sink) captures the essence of fingerprinting. This pattern enables us to clearly distinguish fingerprinting from similar types of scripts like analytics and polyfills. We demonstrate that information flow tracking is an excellent fit for exposing this pattern. To implement EssentialFP we leverage, extend, and deploy JSFlow, a state-of-the-art information flow tracker for JavaScript, in a browser. We illustrate the effectiveness of EssentialFP to spot fingerprinting on the web by evaluating it on two categories of web pages: one where the web pages perform analytics, use polyfills, and show ads, and one where the web pages perform authentication, bot detection, and fingerprinting-enhanced Alexa top pages.
Finding Runtime Usable Gadgets: On the Security of Return Address Authentication. 2021 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :374–381.
.
2021. Return address authentication mechanisms protect return addresses by calculating and checking their message authentication codes (MACs) at runtime. However, these works only provide empirical analysis on their security, and it is still unclear whether the attacker can bypass these defenses by launching reuse attacks.In this paper, we present a solution to quantitatively analysis the security of return address authentication mechanisms against reuse attacks. Our solution utilizes some libc functions that could leakage data from memory. First, we perform reaching definition analysis to identify the source of parameters of these functions. Then we infer how many MACs could be observed at runtime by modifying these parameters. Afterward, we select the gadgets that could be exploited by reusing these observed MACs. Finally, we stitch desired gadget to craft attacks. We evaluated our solution on 5 real-word applications and successfully crafted reuse attacks on 3 of them. We find that the larger an application is, the more libc functions and gadgets can be found and reused, and furthermore, the more likely the attack is successfully crafted.
Highly Efficient and Revocable CP-ABE with Outsourcing Decryption for IoT. 2021 18th International ISC Conference on Information Security and Cryptology (ISCISC). :81–88.
.
2021. In IoT scenarios, computational and communication costs on the user side are important problems. In most expressive ABE schemes, there is a linear relationship between the access structure size and the number of heavy pairing operations that are used in the decryption process. This property limits the application of ABE. We propose an expressive CP-ABE with the constant number of pairings in the decryption process. The simulation shows that the proposed scheme is highly efficient in encryption and decryption processes. In addition, we use the outsourcing method in decryption to get better performance on the user side. The main burden of decryption computations is done by the cloud without revealing any information about the plaintext. We introduce a new revocation method. In this method, the users' communication channels aren't used during the revocation process. These features significantly reduce the computational and communication costs on the user side that makes the proposed scheme suitable for applications such as IoT. The proposed scheme is selectively CPA-secure in the standard model.
Implementation of a Low-Cost IoT Enabled Surveillance Security System. 2021 7th International Conference on Applied System Innovation (ICASI). :101–104.
.
2021. Security is a requirement in society, yet its wide implementation is held back because of high expenses, and barriers to the use of technology. Experimental implementation of security at low cost will only help in promoting the technology at more affordable prices. This paper describes the design of a security system of surveillance using Raspberry Pi and Arduino UNO. The design senses the presence of \$a\$ human in a surveillance area and immediately sets off the buzzer and simultaneously starts capturing video of the motion it had detected and stores it in a folder. When the design senses a motion, it immediately sends an SMS to the user. The user of this design can see the live video of the motion it detects using the internet connection from a remote area. Our objective of making a low-cost surveillance area security system has been mostly fulfilled. Although this is a low-cost project, features can be compared with existing commercially available systems.
An Implicit Approach for Visual Data: Compression Encryption via Singular Value Decomposition, Multiple Chaos and Beta Function. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1—5.
.
2021. This paper proposes a digital image compression-encryption scheme based on the theory of singular value decomposition, multiple chaos and Beta function, which uses SVD to compress the digital image and utilizes three way protections for encryption viz. logistic and Arnold map along with the beta function. The algorithm has three advantages: First, the compression scheme gives the freedom to a user so that one can select the desired compression level according to the application with the help of singular value. Second, it includes a confusion mechanism wherein the pixel positions of image are scrambled employing Cat Map. The pixel location is shuffled, resulting in a cipher text image that is safe for communication. Third the key is generated with the help of logistic map which is nonlinear and chaotic in nature therefore highly secured. Fourth the beta function used for encryption is symmetric in nature which means the order of its parameters does not change the outcome of the operation, meaning faithful reconstruction of an image. Thus, the algorithm is highly secured and also saving the storage space as well. The experimental results show that the algorithm has the advantages of faithful reconstruction with reasonable PSNR on different singular values.
An Integrated Web-Based Approach for Security Enhancement by Identification and Prevention of Scam Websites. 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS). :38–43.
.
2021. Scam websites or illegitimate internet portals are widely used to mislead users into fraud or malicious attacks, which may involve compromise of vital information. Scammers misuse the secrecy and anonymity of the internet of facade their true identity and purposes behind numerous disguises. These can include false security alerts, information betrayal, and other misleading presentations to give the impression of legality and lawfulness. The proposed research is a web-based application - Scam Website Analyser- which enables checking whether a website is a scammed one.. The main aim of the research is to improve security and prevent scams of public websites. It ensures maintaining the details of scam websites in a database and also requests the websites of other databases using external APIs. The basic idea behind the research is the concept of user -orienteers where the user is able to get information about scam websites and prevent themselves from using those sites in future.
Learn Travel Time Distribution with Graph Deep Learning and Generative Adversarial Network. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). :1385–1390.
.
2021. How to obtain accurate travel time predictions is among the most critical problems in Intelligent Transportation Systems (ITS). Recent literature has shown the effectiveness of machine learning models on travel time forecasting problems. However, most of these models predict travel time in a point estimation manner, which is not suitable for real scenarios. Instead of a determined value, the travel time within a future time period is a distribution. Besides, they all use grid structure data to obtain the spatial dependency, which does not reflect the traffic network's actual topology. Hence, we propose GCGTTE to estimate the travel time in a distribution form with Graph Deep Learning and Generative Adversarial Network (GAN). We convert the data into a graph structure and use a Graph Neural Network (GNN) to build its spatial dependency. Furthermore, GCGTTE adopts GAN to approximate the real travel time distribution. We test the effectiveness of GCGTTE with other models on a real-world dataset. Thanks to the fine-grained spatial dependency modeling, GCGTTE outperforms the models that build models on a grid structure data significantly. Besides, we also compared the distribution approximation performance with DeepGTT, a Variational Inference-based model which had the state-of-the-art performance on travel time estimation. The result shows that GCGTTE outperforms DeepGTT on metrics and the distribution generated by GCGTTE is much closer to the original distribution.
A memory-enhanced anomaly detection method for surveillance videos. 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS). :1012–1015.
.
2021. Surveillance videos can capture anomalies in real scenarios and play an important role in security systems. Anomaly events are unpredictable, which reflect the unsupervised nature of the problem. In addition, it is difficult to construct a complete video dataset which contains all normal events. Based on the diversity of normal events, this paper proposes a memory-enhanced unsupervised method for anomaly detection. The proposed method reconstructs video events by combining prototype features and encoded features to detect anomaly events. Furthermore, a memory module is introduced to better store the prototype patterns of normal events. Experimental results in various benchmark datasets demonstrate the effectiveness and robustness of the proposed method.
Press \$@\$@\$\$ to Login: Strong Wearable Second Factor Authentication via Short Memorywise Effortless Typing Gestures. 2021 IEEE European Symposium on Security and Privacy (EuroS P). :71—87.
.
2021. The use of wearable devices (e.g., smartwatches) in two factor authentication (2FA) is fast emerging, as wearables promise better usability compared to smartphones. Still, the current deployments of wearable 2FA have significant usability and security issues. Specifically, one-time PIN-based wearable 2FA (PIN-2FA) requires noticeable user effort to open the app and copy random PINs from the wearable to the login terminal's (desktop/laptop) browser. An alternative approach, based on one-tap approvals via push notifications (Tap-2FA), relies upon user decision making to thwart attacks and is prone to skip-through. Both approaches are also vulnerable to traditional phishing attacks. To address this security-usability tension, we introduce a fundamentally different design of wearable 2FA, called SG-2FA, involving wrist-movement “seamless gestures” captured near transparently by the second factor wearable device while the user types a very short special sequence on the browser during the login process. The typing of the special sequence creates a wrist gesture that when identified correctly uniquely associates the login attempt with the device's owner. The special sequence can be fixed (e.g., “\$@\$@\$\$”), does not need to be a secret, and does not need to be memorized (could be simply displayed on the browser). This design improves usability over PIN-2FA since only this short sequence has to be typed as part of the login process (no interaction with or diversion of attention to the wearable and copying of random PINs is needed). It also greatly improves security compared to Tap-2FA since the attacker can not succeed in login unless the user's wrist is undergoing the exact same gesture at the exact same time. Moreover, the approach is phishing-resistant and privacy-preserving (unlike behavioral biometrics). Our results show that SG-2FA incurs only minimal errors in both benign and adversarial settings based on appropriate parameterizations.
A Randomized Montgomery Powering Ladder Exponentiation for Side-Channel Attack Resilient RSA and Leakage Assessment. 2021 25th International Symposium on VLSI Design and Test (VDAT). :1—5.
.
2021. This paper presents a randomized Montgomery Powering Ladder Modular Exponentiation (RMPLME) scheme for side channel attacks (SCA) resistant Rivest-Shamir-Adleman (RSA) and its leakage resilience analysis. This method randomizes the computation time of square-and-multiply operations for each exponent bit of the Montgomery Powering Ladder (MPL) based RSA exponentiation using various radices (Radix – 2, 22, and 24) based Montgomery Modular multipliers (MMM) randomly. The randomized computations of RMPLME generates non-uniform timing channels information and power traces thus protecting against SCA. In this work, we have developed and implemented a) an unmasked right-to-left Montgomery Modular Exponentiation (R-L MME), b) MPL exponentiation and c) the proposed RMPLME schemes for RSA decryption. All the three realizations have been assessed for side channel leakage using Welch’s t-test and analyzed for secured realizations based on degree of side channel information leakage. RMPLME scheme shows the least side-channel leakage and resilient against SPA, DPA, C-Safe Error, CPA and Timing Attacks.
Ransomware Attacks: Risks, Protection and Prevention Measures. 2021 11th International Conference on Advanced Computer Information Technologies (ACIT). :473—478.
.
2021. This article is about the current situation of cybercrime activity in the world. Research was planned to seek the possible protection measures taking into account the last events which might create an appropriate background for increasing of ransomware damages and cybercrime attacks. Nowadays, the most spread types of cybercrimes are fishing, theft of personal or payment data, cryptojacking, cyberespionage and ransomware. The last one is the most dangerous. It has ability to spread quickly and causes damages and sufficient financial loses. The major problem of this ransomware type is unpredictability of its behavior. It could be overcome only after the defined ransom was paid. This conditions created an appropriate background for the activation of cyber criminals’ activity even the organization of cyber gangs – professional, well-organized and well-prepared (tactical) group. So, researches conducted in this field have theoretical and practical value in the scientific sphere of research.
Remote Non-Intrusive Malware Detection for PLCs based on Chain of Trust Rooted in Hardware. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :369—384.
.
2021. Digitization has been rapidly integrated with manufacturing industries and critical infrastructure to increase efficiency, productivity, and reduce wastefulness, a transition being labeled as Industry 4.0. However, this expansion, coupled with the poor cybersecurity posture of these Industrial Internet of Things (IIoT) devices, has made them prolific targets for exploitation. Moreover, modern Programmable Logic Controllers (PLC) used in the Operational Technology (OT) sector are adopting open-source operating systems such as Linux instead of proprietary software, making such devices susceptible to Linux-based malware. Traditional malware detection approaches cannot be applied directly or extended to such environments due to the unique restrictions of these PLC devices, such as limited computational power and real-time requirements. In this paper, we propose ORRIS, a novel lightweight and out-of-the-device framework that detects malware at both kernel and user-level by processing the information collected using the Joint Test Action Group (JTAG) interface. We evaluate ORRIS against in-the-wild Linux malware achieving maximum detection accuracy of ≈99.7% with very few false-positive occurrences, a result comparable to the state-of-the-art commercial products. Moreover, we also develop and demonstrate a real-time implementation of ORRIS for commercial PLCs.
Representing Consent and Policies for Compliance. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :283–291.
.
2021. Being compliant with the GDPR (and data protection regulations in general) is a difficult task, that calls for manifold, computer-based automated support. In this context, several use cases related to the management and the enforcement of privacy policies and consent call for a machine-understandable policy language, equipped with reliable algorithms for compliance checking and explanations. In this paper, we outline a set of requirements for such languages and algorithms, and address such requirements with a framework based on a profile of OWL2 and a set of policy serializations based on popular formats such as ODRL and JSON. Such ``external'' policy syntax is translated into the ``internal'' OWL2 syntax, thereby enabling semantic compliance checking and explanations using specialized OWL2 reasoners. We provide a precise definition of both the OWL2 profile and the external policy language based on JSON.