Biblio
Filters: First Letter Of Last Name is T [Clear All Filters]
An Evaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet. 2022 IEEE World AI IoT Congress (AIIoT). :725–729.
.
2022. This paper dives into the growing world of IoT botnets that have taken the world by storm in the past five years. Though alone an IP camera cannot produce enough traffic to be considered a DDoS. But a botnet that has over 150,000 connected IP cameras can generate as much as 1 Tbps in traffic. Botnets catch many by surprise because their attacks and infections may not be as apparent as a DDoS, some other cases include using these cameras and printers for extracting information or quietly mine cryptocurrency at the IoT device owner's expense. Here we analyze damages on IoT hacking and define botnet architecture. An overview of Mirai botnet and cryptojacking provided to better understand the IoT botnets.
Experimenting with an SDN-Based NDN Deployment over Wireless Mesh Networks. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1—6.
.
2022. Internet of Things (IoT) evolution calls for stringent communication demands, including low delay and reliability. At the same time, wireless mesh technology is used to extend the communication range of IoT deployments, in a multi-hop manner. However, Wireless Mesh Networks (WMNs) are facing link failures due to unstable topologies, resulting in unsatisfied IoT requirements. Named-Data Networking (NDN) can enhance WMNs to meet such IoT requirements, thanks to the content naming scheme and in-network caching, but necessitates adaptability to the challenging conditions of WMNs.In this work, we argue that Software-Defined Networking (SDN) is an ideal solution to fill this gap and introduce an integrated SDN-NDN deployment over WMNs involving: (i) global view of the network in real-time; (ii) centralized decision making; and (iii) dynamic NDN adaptation to network changes. The proposed system is deployed and evaluated over the wiLab.1 Fed4FIRE+ test-bed. The proof-of-concept results validate that the centralized control of SDN effectively supports the NDN operation in unstable topologies with frequent dynamic changes, such as the WMNs.
Extending a security ontology framework to model CAPEC attack paths and TAL adversary profiles. 2022 18th European Dependable Computing Conference (EDCC). :25–32.
.
2022. Security evaluation can be performed using a variety of analysis methods, such as attack trees, attack graphs, threat propagation models, stochastic Petri nets, and so on. These methods analyze the effect of attacks on the system, and estimate security attributes from different perspectives. However, they require information from experts in the application domain for properly capturing the key elements of an attack scenario: i) the attack paths a system could be subject to, and ii) the different characteristics of the possible adversaries. For this reason, some recent works focused on the generation of low-level security models from a high-level description of the system, hiding the technical details from the modeler.In this paper we build on an existing ontology framework for security analysis, available in the ADVISE Meta tool, and we extend it in two directions: i) to cover the attack patterns available in the CAPEC database, a comprehensive dictionary of known patterns of attack, and ii) to capture all the adversaries’ profiles as defined in the Threat Agent Library (TAL), a reference library for defining the characteristics of external and internal threat agents ranging from industrial spies to untrained employees. The proposed extension supports a richer combination of adversaries’ profiles and attack paths, and provides guidance on how to further enrich the ontology based on taxonomies of attacks and adversaries.
Extending the FLExible Network Tester (Flent) for IEEE 802.11s WLAN Mesh Networks. 2022 IEEE International Symposium on Measurements & Networking (M&N). :1—6.
.
2022. Mesh networks based on the wireless local area network (WLAN) technology, as specified by the standards amendment IEEE 802.11s, provide for a flexible and low-cost interconnection of devices and embedded systems for various use cases. To assess the real-world performance of WLAN mesh networks and potential optimization strategies, suitable testbeds and measurement tools are required. Designed for highly automated transport-layer throughput and latency measurements, the software FLExible Network Tester (Flent) is a promising candidate. However, so far Flent does not integrate information specific to IEEE 802.11s networks, such as peer link status data or mesh routing metrics. Consequently, we propose Flent extensions that allow to additionally capture IEEE 802.11s information as part of the automated performance tests. For the functional validation of our extensions, we conduct Flent measurements in a mesh mobility scenario using the network emulation framework Mininet-WiFi.
Fair-SSL: Building fair ML Software with less data. 2022 IEEE/ACM International Workshop on Equitable Data & Technology (FairWare). :1–8.
.
2022. Ethical bias in machine learning models has become a matter of concern in the software engineering community. Most of the prior software engineering works concentrated on finding ethical bias in models rather than fixing it. After finding bias, the next step is mitigation. Prior researchers mainly tried to use supervised approaches to achieve fairness. However, in the real world, getting data with trustworthy ground truth is challenging and also ground truth can contain human bias. Semi-supervised learning is a technique where, incrementally, labeled data is used to generate pseudo-labels for the rest of data (and then all that data is used for model training). In this work, we apply four popular semi-supervised techniques as pseudo-labelers to create fair classification models. Our framework, Fair-SSL, takes a very small amount (10%) of labeled data as input and generates pseudo-labels for the unlabeled data. We then synthetically generate new data points to balance the training data based on class and protected attribute as proposed by Chakraborty et al. in FSE 2021. Finally, classification model is trained on the balanced pseudo-labeled data and validated on test data. After experimenting on ten datasets and three learners, we find that Fair-SSL achieves similar performance as three state-of-the-art bias mitigation algorithms. That said, the clear advantage of Fair-SSL is that it requires only 10% of the labeled training data. To the best of our knowledge, this is the first SE work where semi-supervised techniques are used to fight against ethical bias in SE ML models. To facilitate open science and replication, all our source code and datasets are publicly available at https://github.com/joymallyac/FairSSL. CCS CONCEPTS • Software and its engineering → Software creation and management; • Computing methodologies → Machine learning. ACM Reference Format: Joymallya Chakraborty, Suvodeep Majumder, and Huy Tu. 2022. Fair-SSL: Building fair ML Software with less data. In International Workshop on Equitable Data and Technology (FairWare ‘22), May 9, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3524491.3527305
FIBA: Frequency-Injection based Backdoor Attack in Medical Image Analysis. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :20844—20853.
.
2022. In recent years, the security of AI systems has drawn increasing research attention, especially in the medical imaging realm. To develop a secure medical image analysis (MIA) system, it is a must to study possible backdoor attacks (BAs), which can embed hidden malicious behaviors into the system. However, designing a unified BA method that can be applied to various MIA systems is challenging due to the diversity of imaging modalities (e.g., X-Ray, CT, and MRI) and analysis tasks (e.g., classification, detection, and segmentation). Most existing BA methods are designed to attack natural image classification models, which apply spatial triggers to training images and inevitably corrupt the semantics of poisoned pixels, leading to the failures of attacking dense prediction models. To address this issue, we propose a novel Frequency-Injection based Backdoor Attack method (FIBA) that is capable of delivering attacks in various MIA tasks. Specifically, FIBA leverages a trigger function in the frequency domain that can inject the low-frequency information of a trigger image into the poisoned image by linearly combining the spectral amplitude of both images. Since it preserves the semantics of the poisoned image pixels, FIBA can perform attacks on both classification and dense prediction models. Experiments on three benchmarks in MIA (i.e., ISIC-2019 [4] for skin lesion classification, KiTS-19 [17] for kidney tumor segmentation, and EAD-2019 [1] for endoscopic artifact detection), validate the effectiveness of FIBA and its superiority over stateof-the-art methods in attacking MIA models and bypassing backdoor defense. Source code will be available at code.
An FLL-Based Clock Glitch Detector for Security Circuits in a 5nm FINFET Process. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). :146–147.
.
2022. The rapid complexity growth of electronic systems nowadays increases their vulnerability to hacking, such as fault injection, including insertion of glitches into the system clock to corrupt internal state through timing errors. As a countermeasure, a frequency locked loop (FLL) based clock glitch detector is proposed in this paper. Regulated from an external supply voltage, this FLL locks at 16-36X of the system clock, creating four phases to measure the system clock by oversampling at 64-144X. The samples are then used to sense the frequency and close the frequency locked loop, as well as to detect glitches through pattern matching. Implemented in a 5nm FINFET process, it can detect the glitches or pulse width variations down to 3.125% of the input 40MHz clock cycle with the supply varying from 0.5 to 1.0V.
ISSN: 2158-9682
Forensic Analysis of Private Mode Browsing Artifacts in Portable Web Browsers Using Memory Forensics. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1–5.
.
2022. The popularity of portable web browsers is increasing due to its convenient and compact nature along with the benefit of the data being stored and transferred easily using a USB drive. As technology gets updated frequently, developers are working on web browsers that can be portable in nature with additional security features like private mode browsing, built in ad blockers etc. The increased probability of using portable web browsers for carrying out nefarious activities is a result of cybercriminals with the thought that if they use portable web browsers in private mode it won't leave a digital footprint. Hence, the research paper aims at performing a comparative study of four portable web browsers namely Brave, TOR, Vivaldi, and Maxthon along with various memory acquisition tools to understand the quantity and quality of the data that can be recovered from the memory dump in two different conditions that is when the browser tabs were open and when the browser tabs were closed in a system to aid the forensic investigators.
On Frame Fingerprinting and Controller Area Networks Security in Connected Vehicles. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :821–826.
.
2022. Modern connected vehicles are equipped with a large number of sensors, which enable a wide range of services that can improve overall traffic safety and efficiency. However, remote access to connected vehicles also introduces new security issues affecting both inter and intra-vehicle communications. In fact, existing intra-vehicle communication systems, such as Controller Area Network (CAN), lack security features, such as encryption and secure authentication for Electronic Control Units (ECUs). Instead, Original Equipment Manufacturers (OEMs) seek security through obscurity by keeping secret the proprietary format with which they encode the information. Recently, it has been shown that the reuse of CAN frame IDs can be exploited to perform CAN bus reverse engineering without physical access to the vehicle, thus raising further security concerns in a connected environment. This work investigates whether anonymizing the frames of each newly released vehicle is sufficient to prevent CAN bus reverse engineering based on frame ID matching. The results show that, by adopting Machine Learning techniques, anonymized CAN frames can still be fingerprinted and identified in an unknown vehicle with an accuracy of up to 80 %.
ISSN: 2331-9860
A Framework for Automated API Fuzzing at Enterprise Scale. 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). :377–388.
.
2022. Web-based Application Programming Interfaces (APIs) are often described using SOAP, OpenAPI, and GraphQL specifications. These specifications provide a consistent way to define web services and enable automated fuzz testing. As such, many fuzzers take advantage of these specifications. However, in an enterprise setting, the tools are usually installed and scaled by individual teams, leading to duplication of efforts. There is a need for an enterprise-wide fuzz testing solution to provide shared, cost efficient, off-nominal testing at scale where fuzzers can be plugged-in as needed. Internet cloud-based fuzz testing-as-a-service solutions mitigate scalability concerns but are not always feasible as they require artifacts to be uploaded to external infrastructure. Typically, corporate policies prevent sharing artifacts with third parties due to cost, intellectual property, and security concerns. We utilize API specifications and combine them with cluster computing elasticity to build an automated, scalable framework that can fuzz multiple apps at once and retain the trust boundary of the enterprise.
ISSN: 2159-4848
A Framework for Supporting Privacy Preservation Functions in a Mobile Cloud Environment. 2022 23rd IEEE International Conference on Mobile Data Management (MDM). :286—289.
.
2022. The problem of privacy protection of trajectory data has received increasing attention in recent years with the significant grow in the volume of users that contribute trajectory data with rich user information. This creates serious privacy concerns as exposing an individual's privacy information may result in attacks threatening the user's safety. In this demonstration we present TP$^\textrm3$ a novel practical framework for supporting trajectory privacy preservation in Mobile Cloud Environments (MCEs). In TP$^\textrm3$, non-expert users submit their trajectories and the system is responsible to determine their privacy exposure before sharing them to data analysts in return for various benefits, e.g. better recommendations. TP$^\textrm3$ makes a number of contributions: (a) It evaluates the privacy exposure of the users utilizing various privacy operations, (b) it is latency-efficient as it implements the privacy operations as serverless functions which can scale automatically to serve an increasing number of users with low latency, and (c) it is practical and cost-efficient as it exploits the serverless model to adapt to the demands of the users with low operational costs for the service provider. Finally, TP$^\textrm3$'s Web-UI provides insights to the service provider regarding the performance and the respective revenue from the service usage, while enabling the user to submit the trajectories with recommended preferences of privacy.
Implementation of Techniques for Enhancing Security of Southbound Infrastructure in SDN. 2022 13th International Conference on Network of the Future (NoF). :1–5.
.
2022. In this paper we present techniques for enhancing the security of south bound infrastructure in SDN which includes OpenFlow switches and end hosts. In particular, the proposed security techniques have three main goals: (i) validation and secure configuration of flow rules in the OpenFlow switches by trusted SDN controller in the domain; (ii) securing the flows from the end hosts; and (iii) detecting attacks on the switches by malicious entities in the SDN domain. We have implemented the proposed security techniques as an application for ONOS SDN controller. We have also validated our application by detecting various OpenFlow switch specific attacks such as malicious flow rule insertions and modifications in the switches over a mininet emulated network.
ISSN: 2833-0072
Improving Anomaly Detection with a Self-Supervised Task Based on Generative Adversarial Network. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3563–3567.
.
2022. Existing anomaly detection models show success in detecting abnormal images with generative adversarial networks on the insufficient annotation of anomalous samples. However, existing models cannot accurately identify the anomaly samples which are close to the normal samples. We assume that the main reason is that these methods ignore the diversity of patterns in normal samples. To alleviate the above issue, this paper proposes a novel anomaly detection framework based on generative adversarial network, called ADe-GAN. More concretely, we construct a self-supervised learning task to fully explore the pattern information and latent representations of input images. In model inferring stage, we design a new abnormality score approach by jointly considering the pattern information and reconstruction errors to improve the performance of anomaly detection. Extensive experiments show that the ADe-GAN outperforms the state-of-the-art methods over several real-world datasets.
ISSN: 2379-190X
Influence-Driven Data Poisoning in Graph-Based Semi-Supervised Classifiers. 2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN). :77—87.
.
2022. Graph-based Semi-Supervised Learning (GSSL) is a practical solution to learn from a limited amount of labelled data together with a vast amount of unlabelled data. However, due to their reliance on the known labels to infer the unknown labels, these algorithms are sensitive to data quality. It is therefore essential to study the potential threats related to the labelled data, more specifically, label poisoning. In this paper, we propose a novel data poisoning method which efficiently approximates the result of label inference to identify the inputs which, if poisoned, would produce the highest number of incorrectly inferred labels. We extensively evaluate our approach on three classification problems under 24 different experimental settings each. Compared to the state of the art, our influence-driven attack produces an average increase of error rate 50% higher, while being faster by multiple orders of magnitude. Moreover, our method can inform engineers of inputs that deserve investigation (relabelling them) before training the learning model. We show that relabelling one-third of the poisoned inputs (selected based on their influence) reduces the poisoning effect by 50%. ACM Reference Format: Adriano Franci, Maxime Cordy, Martin Gubri, Mike Papadakis, and Yves Le Traon. 2022. Influence-Driven Data Poisoning in Graph-Based Semi-Supervised Classifiers. In 1st Conference on AI Engineering - Software Engineering for AI (CAIN’22), May 16–24, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3522664.3528606
Integer Wavelet Transform and Dual Decomposition Based Image Watermarking scheme for Reliability of DICOM Medical Image. 2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–6.
.
2022. Image watermarking techniques provides security, reliability copyright protection for various multimedia contents. In this paper Integer Wavelet Transform Schur decomposition and Singular value decomposition (SVD) based image watermarking scheme is suggested for the integrity protection of dicom images. In the proposed technique 3-level Integer wavelet transform (IWT) is subjected into the Dicom ultrasound image of liver cover image and in HH sub-band Schur decomposition is applied. The upper triangular matrix obtained from Schur decomposition of HH sub-band is further processed with SVD to attain the singular values. The X-ray watermark image is pre-processed before embedding into cover image by applying 3-level IWT is applied into it and singular matrix of LL sub-band is embedded. The watermarked image is encrypted using Arnold chaotic encryption for its integrity protection. The performance of suggested scheme is tested under various attacks like filtering (median, average, Gaussian) checkmark (histogram equalization, rotation, horizontal and vertical flipping, contrast enhancement, gamma correction) and noise (Gaussian, speckle, Salt & Pepper Noise). The proposed technique provides strong robustness against various attacks and chaotic encryption provides integrity to watermarked image.
ISSN: 2687-7767
Integrated Design and Verification of Locomotive Traction Gearbox Based on Finite Element Analysis. 2022 13th International Conference on Mechanical and Aerospace Engineering (ICMAE). :174–183.
.
2022. This paper use the method of finite element analysis, and comparing and analyzing the split box and the integrated box from two aspects of modal analysis and static analysis. It is concluded that the integrated box has the characteristics of excellent vibration characteristics and high strength tolerance; At the same time, according to the S-N curve of the material and the load spectrum of the box, the fatigue life of the integrated box is 26.24 years by using the fatigue analysis software Fe-safe, which meets the service life requirements; The reliability analysis module PDS is used to calculate the reliability of the box, and the reliability of the integrated box is 96.5999%, which meets the performance requirements.
Investigating Novel Approaches to Defend Software Supply Chain Attacks. 2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :283–288.
.
2022. Software supply chain attacks occur during the processes of producing software is compromised, resulting in vulnerabilities that target downstream customers. While the number of successful exploits is limited, the impact of these attacks is significant. Despite increased awareness and research into software supply chain attacks, there is limited information available on mitigating or architecting for these risks, and existing information is focused on singular and independent elements of the supply chain. In this paper, we extensively review software supply chain security using software development tools and infrastructure. We investigate the path that attackers find is least resistant followed by adapting and finding the next best way to complete an attack. We also provide a thorough discussion on how common software supply chain attacks can be prevented, preventing malicious hackers from gaining access to an organization's development tools and infrastructure including the development environment. We considered various SSC attacks on stolen code-sign certificates by malicious attackers and prevented unnoticed malware from passing by security scanners. We are aiming to extend our research to contribute to preventing software supply chain attacks by proposing novel techniques and frameworks.
Investigation Malware Analysis Depend on Reverse Engineering Using IDAPro. 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM). :227—231.
.
2022. Any software that runs malicious payloads on victims’ computers is referred to as malware. It is an increasing threat that costs people, businesses, and organizations a lot of money. Attacks on security have developed significantly in recent years. Malware may infiltrate both offline and online media, like: chat, SMS, and spam (email, or social media), because it has a built-in defensive mechanism and may conceal itself from antivirus software or even corrupt it. As a result, there is an urgent need to detect and prevent malware before it damages critical assets around the world. In fact, there are lots of different techniques and tools used to combat versus malware. In this paper, the malware samples were analyzing in the Virtual Box environment using in-depth analysis based on reverse engineering using advanced static malware analysis techniques. The results Obtained from malware analysis which represent a set of valuable information, all anti-malware and anti-virus program companies need for in order to update their products.
Keeping Connected in Internet-Isolated Locations. 2022 Seventh International Conference On Mobile And Secure Services (MobiSecServ). :1–7.
.
2022. In many scenarios, Internet connectivity may not be available. In such situations, device-to-device (D2D) communication may be utilized to establish a peer-to-peer (P2P) network among mobile users in the vicinity. However, this raises a fundamental question as is how to ensure secure communication in such an infrastructure-less network. In this paper, we present an approach that enables connectivity between mobile devices in the vicinity and supports secure communication between users in Internet-isolated locations. Specifically, the proposed solution uses Wi-Fi Aware for establishing a P2P network and the mTLS (mutual Transport Layer Security) protocol to provide mutually authenticated and encrypted message transfer. Besides, a novel decentralized peer authentication (DPA) scheme compatible with Wi-Fi Aware and TLS is proposed, which enables peers to verify other peers to join the network. A proof-of-concept instant messaging application has been developed to test the proposed DPA scheme and to evaluate the performance of the proposed overall approach. Experimental results, which validate the proposed solution, are presented with findings and limitations discussed.
ISSN: 2640-558X
Laser-Based Signal-Injection Attack on Piezoresistive MEMS Pressure Sensors. 2022 IEEE Sensors. :1–4.
.
2022. As more and more information systems rely sen-sors for their critical decisions, there is a growing threat of injecting false signals to sensors in the analog domain. In particular, LightCommands showed that MEMS microphones are susceptible to light, through the photoacoustic and photoelectric effects, enabling an attacker to silently inject voice commands to smart speakers. Understanding such unexpected transduction mechanisms is essential for designing secure and reliable MEMS sensors. Is there any other transduction mechanism enabling laser-induced attacks? We positively answer the question by experimentally evaluating two commercial piezoresistive MEMS pressure sensors. By shining a laser light at the piezoresistors through an air hole on the sensor package, the pressure reading changes by ±1000 hPa with 0.5 mW laser power. This phenomenon can be explained by the photoelectric effect at the piezoresistors, which increases the number of carriers and decreases the resistance. We finally show that an attacker can induce the target signal at the sensor reading by shining an amplitude-modulated laser light.
ISSN: 2168-9229
Library of Fully Homomorphic Encryption on a Microcontroller. 2022 International Conference on Smart Information Systems and Technologies (SIST). :1—5.
.
2022. Fully homomorphic encryption technologies allow you to operate on encrypted data without disclosing it, therefore they have a lot of potential for solving personal data storage and processing issues. Because of the increased interest in these technologies, various software tools and libraries that allow completely homomorphic encryption have emerged. However, because this subject of cryptography is still in its early stages, standards and recommendations for the usage of completely homomorphic encryption algorithms are still being developed. The paper presents the main areas of application of homomorphic encryption. The analysis of existing developments in the field of homomorphic encryption is carried out. The analysis showed that existing library implementations do not support the division and subtraction operation. The analysis revealed the need to develop a library of fully homomorphic encryption, which allows performing all mathematical operations on them (addition, difference, multiplication and division), as well as the relevance of developing its own implementation of a library of homomorphic encryption on integers. Then, implement the development of a fully homomorphic encryption library in C++ and on an ESP 32 microcontroller. The ability to perform four operations (addition, difference, multiplication and division) on encrypted data will expand the scope of application of homomorphic encryption. A method of homomorphic division and subtraction is proposed that allows performing the division and subtraction operation on homomorphically encrypted data. The level of security, the types of operations executed, the maximum length of operands, and the algorithm's running time are all described as a consequence of numerical experimentation with parameters.
Low-complexity Forward Error Correction For 800G Unamplified Campus Link. 2022 20th International Conference on Optical Communications and Networks (ICOCN). :1—3.
.
2022. The discussion about forward error correction (FEC) used for 800G unamplified link (800LR) is ongoing. Aiming at two potential options for FEC bit error ratio (BER) threshold, we propose two FEC schemes, respectively based on channel-polarized (CP) multilevel coding (MLC) and bit interleaved coded modulation (BICM), with the same inner FEC code. The field-programmable gate array (FPGA) verification results indicate that with the same FEC overhead (OH), proposed CP-MLC outperforms BICM scheme with less resource and power consumption.
An LSTM-based Intent Detector for Conversational Recommender Systems. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–5.
.
2022. With the rapid development of artificial intelligence (AI), many companies are moving towards automating their services using automated conversational agents. Dialogue-based conversational recommender agents, in particular, have gained much attention recently. The successful development of such systems in the case of natural language input is conditioned by the ability to understand the users’ utterances. Predicting the users’ intents allows the system to adjust its dialogue strategy and gradually upgrade its preference profile. Nevertheless, little work has investigated this problem so far. This paper proposes an LSTM-based Neural Network model and compares its performance to seven baseline Machine Learning (ML) classifiers. Experiments on a new publicly available dataset revealed The superiority of the LSTM model with 95% Accuracy and 94% F1-score on the full dataset despite the relatively small dataset size (9300 messages and 17 intents) and label imbalance.
ISSN: 2577-2465
mdx: A Cloud Platform for Supporting Data Science and Cross-Disciplinary Research Collaborations. 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :1–7.
.
2022. The growing amount of data and advances in data science have created a need for a new kind of cloud platform that provides users with flexibility, strong security, and the ability to couple with supercomputers and edge devices through high-performance networks. We have built such a nation-wide cloud platform, called "mdx" to meet this need. The mdx platform's virtualization service, jointly operated by 9 national universities and 2 national research institutes in Japan, launched in 2021, and more features are in development. Currently mdx is used by researchers in a wide variety of domains, including materials informatics, geo-spatial information science, life science, astronomical science, economics, social science, and computer science. This paper provides an overview of the mdx platform, details the motivation for its development, reports its current status, and outlines its future plans.
Message Source Identification in Controller Area Network by Utilizing Diagnostic Communications and an Intrusion Detection System. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). :1–6.
.
2022. International regulations specified in WP.29 and international standards specified in ISO/SAE 21434 require security operations such as cyberattack detection and incident responses to protect vehicles from cyberattacks. To meet these requirements, many vehicle manufacturers are planning to install Intrusion Detection Systems (IDSs) in the Controller Area Network (CAN), which is a primary component of in-vehicle networks, in the coming years. Besides, many vehicle manufacturers and information security companies are developing technologies to identify attack paths related to IDS alerts to respond to cyberattacks appropriately and quickly. To develop the IDSs and the technologies to identify attack paths, it is essential to grasp normal communications performed on in-vehicle networks. Thus, our study aims to develop a technology that can easily grasp normal communications performed on in-vehicle networks. In this paper, we propose the first message source identification method that easily identifies CAN-IDs used by each Electronic Control Unit (ECU) connected to the CAN for message transmissions. We realize the proposed method by utilizing diagnostic communications and an IDS installed in the CAN (CAN-IDS). We evaluate the proposed method using an ECU installed in an actual vehicle and four kinds of simulated CAN-IDSs based on typical existing intrusion detection methods for the CAN. The evaluation results show that the proposed method can identify the CAN-ID used by the ECU for CAN message transmissions if a suitable simulated CAN-IDS for the proposed method is connected to the vehicle.
ISSN: 2577-2465