Biblio

Found 2208 results

Filters: First Letter Of Last Name is T  [Clear All Filters]
2020-12-14
Cai, Y., Fragkos, G., Tsiropoulou, E. E., Veneris, A..  2020.  A Truth-Inducing Sybil Resistant Decentralized Blockchain Oracle. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :128–135.
Many blockchain applications use decentralized oracles to trustlessly retrieve external information as those platforms are agnostic to real-world information. Some existing decentralized oracle protocols make use of majority-voting schemes to determine the outcomes and/or rewards to participants. In these cases, the awards (or penalties) grow linearly to the participant stakes, therefore voters are indifferent between voting through a single or multiple identities. Furthermore, the voters receive a reward only when they agree with the majority outcome, a tactic that may lead to herd behavior. This paper proposes an oracle protocol based on peer prediction mechanisms with non-linear staking rules. In the proposed approach, instead of being rewarded when agreeing with a majority outcome, a voter receives awards when their report achieves a relatively high score based on a peer prediction scoring scheme. The scoring scheme is designed to be incentive compatible so that the maximized expected score is achieved only with honest reporting. A non-linear stake scaling rule is proposed to discourage Sybil attacks. This paper also provides a theoretical analysis and guidelines for implementation as reference.
2021-08-17
Thawre, Gopikishan, Bahekar, Nitin, Chandavarkar, B. R..  2020.  Use Cases of Authentication Protocols in the Context of Digital Payment System. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
In the digital payment system, the transactions and their data about clients are very sensitive, so the security and privacy of personal information of the client is a big concern. The confirmation towards security necessities prevents the data from a stolen and unauthorized person over the digital transactions, So the stronger authentication methods required, which must be based on cryptography. Initially, in the payment ecosystem, they were using the Kerberos protocol, but now different approaches such as Challenge-Handshake Authentication Protocol (CHAP), Tokenization, Two-Factor Authentication(PIN, MPIN, OTP), etc. such protocols are being used in the payment system. This paper presents the use cases of different authentication protocols. Further, the use of these protocols in online payment systems to verify each individual are explained.
2020-12-21
Guo, W., Atthanayake, I., Thomas, P..  2020.  Vertical Underwater Molecular Communications via Buoyancy: Gaussian Velocity Distribution of Signal. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Underwater communication is vital for a variety of defence and scientific purposes. Current optical and sonar based carriers can deliver high capacity data rates, but their range and reliability is hampered by heavy propagation loss. A vertical Molecular Communication via Buoyancy (MCvB) channel is experimentally investigated here, where the dominant propagation force is buoyancy. Sequential puffs representing modulated symbols are injected and after the initial loss of momentum, the signal is driven by buoyancy forces which apply to both upwards and downwards channels. Coupled with the complex interaction of turbulent and viscous diffusion, we experimentally demonstrate that sequential symbols exhibit a Gaussian velocity spatial distribution. Our experimental results use Particle Image Velocimetry (PIV) to trace molecular clusters and infer statistical characteristics of their velocity profile. We believe our experimental paper's results can be the basis for long range underwater vertical communication between a deep sea vehicle and a surface buoy, establishing a covert and reliable delay-tolerant data link. The statistical distribution found in this paper is akin to the antenna pattern and the knowledge can be used to improve physical security.
2021-07-08
Sato, Masaya, Taniguchi, Hideo, Nakamura, Ryosuke.  2020.  Virtual Machine Monitor-based Hiding Method for Access to Debug Registers. 2020 Eighth International Symposium on Computing and Networking (CANDAR). :209—214.
To secure a guest operating system running on a virtual machine (VM), a monitoring method using hardware breakpoints by a virtual machine monitor is required. However, debug registers are visible to guest operating systems; thus, malicious programs on a guest operating system can detect or disable the monitoring method. This paper presents a method to hide access to debug registers from programs running on a VM. Our proposed method detects programs' access to debug registers and disguises the access as having succeeded. The register's actual value is not visible or modifiable to programs, so the monitoring method is hidden. This paper presents the basic design and evaluation results of our method.
2021-04-27
Tolsdorf, J., Iacono, L. Lo.  2020.  Vision: Shred If Insecure – Persuasive Message Design as a Lesson and Alternative to Previous Approaches to Usable Secure Email Interfaces. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :172–177.
Despite the advances in research on usable secure email, the majority of mail user agents found in practice still violates best practices in UI design and uses ineffective and inhomogeneous design strategies to communicate and let users control the security status of an email message.We propose a novel interaction and design concept that we refer to as persuasive message design. Our approach is derived from heuristics and a systematic meta-study of existing HCI literature on email management, usable secure email and phishing research. Concluding on this body of knowledge we propose the design of interfaces that suppress weak cues and instead manipulate the display of emails according to their technical security level. Persuasive message design addresses several shortcomings of current secure email user interfaces and provides a consistent user experience that can be deployed even by email providers.
2021-02-15
Maldonado-Ruiz, D., Torres, J., Madhoun, N. El.  2020.  3BI-ECC: a Decentralized Identity Framework Based on Blockchain Technology and Elliptic Curve Cryptography. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :45–46.

Most of the authentication protocols assume the existence of a Trusted Third Party (TTP) in the form of a Certificate Authority or as an authentication server. The main objective of this research is to present an autonomous solution where users could store their credentials, without depending on TTPs. For this, the use of an autonomous network is imperative, where users could use their uniqueness in order to identify themselves. We propose the framework “Three Blockchains Identity Management with Elliptic Curve Cryptography (3BI-ECC)”. Our proposed framework is a decentralize identity management system where users' identities are self-generated.

2020-10-12
Amjad Ibrahim, Tobias Klesel, Ehsan Zibaei, Severin Kacianka, Alexander Pretschner.  2020.  Actual Causality Canvas: A General Framework for Explanation-based Socio-Technical Constructs. European Conference on Artificial Intelligence 2020.

The rapid deployment of digital systems into all aspects of daily life requires embedding social constructs into the digital world. Because of the complexity of these systems, there is a need for technical support to understand their actions. Social concepts, such as explainability, accountability, and responsibility rely on a notion of actual causality. Encapsulated in the Halpern and Pearl’s (HP) definition, actual causality conveniently integrates into the socio-technical world if operationalized in concrete applications. To the best of our knowledge, theories of actual causality such as the HP definition are either applied in correspondence with domain-specific concepts (e.g., a lineage of a database query) or demonstrated using straightforward philosophical examples. On the other hand, there is a lack of explicit automated actual causality theories and operationalizations for helping understand the actions of systems. Therefore, this paper proposes a unifying framework and an interactive platform (Actual Causality Canvas) to address the problem of operationalizing actual causality for different domains and purposes. We apply this framework in such areas as aircraft accidents, unmanned aerial vehicles, and artificial intelligence (AI) systems for purposes of forensic investigation, fault diagnosis, and explainable AI. We show that with minimal effort, using our general-purpose interactive platform, actual causality reasoning can be integrated into these domains.

2021-03-22
Ban, T. Q., Nguyen, T. T. T., Long, V. T., Dung, P. D., Tung, B. T..  2020.  A Benchmarking of the Effectiveness of Modular Exponentiation Algorithms using the library GMP in C language. 2020 International Conference on Computational Intelligence (ICCI). :237–241.
This research aims to implement different modular exponentiation algorithms and evaluate the average complexity and compare it to the theoretical value. We use the library GMP to implement seven modular exponentiation algorithms. They are Left-to-right Square and Multiply, Right-to-left Square and Multiply, Left-to-right Signed Digit Square, and Multiply Left-to-right Square and Multiply Always Right-to-left Square and Multiply Always, Montgomery Ladder and Joye Ladder. For some exponent bit length, we choose 1024 bits and execute each algorithm on many exponent values and count the average numbers of squares and the average number of multiplications. Whenever relevant, our programs will check the consistency relations between the registers at the end of the exponentiation.
2021-09-16
Torkura, Kennedy A., Sukmana, Muhammad I. H., Cheng, Feng, Meinel, Christoph.  2020.  CloudStrike: Chaos Engineering for Security and Resiliency in Cloud Infrastructure. IEEE Access. 8:123044–123060.
Most cyber-attacks and data breaches in cloud infrastructure are due to human errors and misconfiguration vulnerabilities. Cloud customer-centric tools are imperative for mitigating these issues, however existing cloud security models are largely unable to tackle these security challenges. Therefore, novel security mechanisms are imperative, we propose Risk-driven Fault Injection (RDFI) techniques to address these challenges. RDFI applies the principles of chaos engineering to cloud security and leverages feedback loops to execute, monitor, analyze and plan security fault injection campaigns, based on a knowledge-base. The knowledge-base consists of fault models designed from secure baselines, cloud security best practices and observations derived during iterative fault injection campaigns. These observations are helpful for identifying vulnerabilities while verifying the correctness of security attributes (integrity, confidentiality and availability). Furthermore, RDFI proactively supports risk analysis and security hardening efforts by sharing security information with security mechanisms. We have designed and implemented the RDFI strategies including various chaos engineering algorithms as a software tool: CloudStrike. Several evaluations have been conducted with CloudStrike against infrastructure deployed on two major public cloud infrastructure: Amazon Web Services and Google Cloud Platform. The time performance linearly increases, proportional to increasing attack rates. Also, the analysis of vulnerabilities detected via security fault injection has been used to harden the security of cloud resources to demonstrate the effectiveness of the security information provided by CloudStrike. Therefore, we opine that our approaches are suitable for overcoming contemporary cloud security issues.
2021-05-25
Wei, Wenqi, Liu, Ling, Loper, Margaret, Chow, Ka-Ho, Gursoy, Emre, Truex, Stacey, Wu, Yanzhao.  2020.  Cross-Layer Strategic Ensemble Defense Against Adversarial Examples. 2020 International Conference on Computing, Networking and Communications (ICNC). :456—460.

Deep neural network (DNN) has demonstrated its success in multiple domains. However, DNN models are inherently vulnerable to adversarial examples, which are generated by adding adversarial perturbations to benign inputs to fool the DNN model to misclassify. In this paper, we present a cross-layer strategic ensemble framework and a suite of robust defense algorithms, which are attack-independent, and capable of auto-repairing and auto-verifying the target model being attacked. Our strategic ensemble approach makes three original contributions. First, we employ input-transformation diversity to design the input-layer strategic transformation ensemble algorithms. Second, we utilize model-disagreement diversity to develop the output-layer strategic model ensemble algorithms. Finally, we create an input-output cross-layer strategic ensemble defense that strengthens the defensibility by combining diverse input transformation based model ensembles with diverse output verification model ensembles. Evaluated over 10 attacks on ImageNet dataset, we show that our strategic ensemble defense algorithms can achieve high defense success rates and are more robust with high attack prevention success rates and low benign false negative rates, compared to existing representative defenses.

2021-04-27
Tahsini, A., Dunstatter, N., Guirguis, M., Ahmed, C. M..  2020.  DeepBLOC: A Framework for Securing CPS through Deep Reinforcement Learning on Stochastic Games. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.

One important aspect in protecting Cyber Physical System (CPS) is ensuring that the proper control and measurement signals are propagated within the control loop. The CPS research community has been developing a large set of check blocks that can be integrated within the control loop to check signals against various types of attacks (e.g., false data injection attacks). Unfortunately, it is not possible to integrate all these “checks” within the control loop as the overhead introduced when checking signals may violate the delay constraints of the control loop. Moreover, these blocks do not completely operate in isolation of each other as dependencies exist among them in terms of their effectiveness against detecting a subset of attacks. Thus, it becomes a challenging and complex problem to assign the proper checks, especially with the presence of a rational adversary who can observe the check blocks assigned and optimizes her own attack strategies accordingly. This paper tackles the inherent state-action space explosion that arises in securing CPS through developing DeepBLOC (DB)-a framework in which Deep Reinforcement Learning algorithms are utilized to provide optimal/sub-optimal assignments of check blocks to signals. The framework models stochastic games between the adversary and the CPS defender and derives mixed strategies for assigning check blocks to ensure the integrity of the propagated signals while abiding to the real-time constraints dictated by the control loop. Through extensive simulation experiments and a real implementation on a water purification system, we show that DB achieves assignment strategies that outperform other strategies and heuristics.

2021-05-25
Zhao, Zhao, Hou, Yanzhao, Tang, Xiaosheng, Tao, Xiaofeng.  2020.  Demo Abstract: Cross-layer Authentication Based on Physical Channel Information using OpenAirInterface. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1334—1335.

The time-varying properties of the wireless channel are a powerful source of information that can complement and enhance traditional security mechanisms. Therefore, we propose a cross-layer authentication mechanism that combines physical layer channel information and traditional authentication mechanism in LTE. To verify the feasibility of the proposed mechanism, we build a cross-layer authentication system that extracts the phase shift information of a typical UE and use the ensemble learning method to train the fingerprint map based on OAI LTE. Experimental results show that our cross-layer authentication mechanism can effectively prompt the security of LTE system.

2021-09-21
Taranum, Fahmina, Sarvat, Ayesha, Ali, Nooria, Siddiqui, Shamekh.  2020.  Detection and Prevention of Blackhole Node. 2020 4th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1–7.
Mobile Adhoc networks (MANETs) comprises of mobile devices or nodes that are connected wirelessly and have no infrastructure. Detecting malicious activities in MANETs is a challenging task as they are vulnerable to attacks where the performance of the entire network degrades. Hence it is necessary to provide security to the network so that the nodes are prone to attack. Selecting a good routing protocol in MANET is also important as frequent change of topology causes the route reply to not arrive at the source node. In this paper, R-AODV (Reverse Adhoc On-Demand Distance Vector) protocol along with ECC (Elliptic Key Cryptography) algorithm is designed and implemented to detect and to prevent the malicious node and to secure data transmission against blackhole attack. The main objective is to keep the data packets secure. ECC provides a smaller key size compared to other public-key encryption and eliminates the requirement of pre-distributed keys also makes the path more secure against blackhole attacks in a MANET. The performance of this proposed system is simulated by using the NS-2.35 network simulator. Simulation results show that the proposed protocol provides good experimental results on various metrics like throughput, end-to-end delay, and PDR. Analysis of the results points to an improvement in the overall network performance.
2021-03-18
Tsuyoshi Arai, Yasuo Okabe, Yoshinori Matsumoto, Koji Kawamura.  2020.  Detection of Bots in CAPTCHA as a Cloud Service Utilizing Machine Learning.

In recent years, the damage caused by unauthorized access using bots has increased. Compared with attacks on conventional login screens, the success rate is higher and detection of them is more difficult. CAPTCHA is commonly utilized as a technology for avoiding attacks by bots. But user's experience declines as the difficulty of CAPTCHA becomes higher corresponding to the advancement of the bot. As a solution, adaptive difficulty setting of CAPTCHA combining with bot detection technologies is considered. In this research, we focus on Capy puzzle CAPTCHA, which is widely used in commercial service. We use a supervised machine learning approach to detect bots. As a training data, we use access logs to several Web services, and add flags to attacks by bots detected in the past. We have extracted vectors fields like HTTP-User-Agent and some information from IP address (e.g. geographical information) from the access logs, and the dataset is investigated using supervised learning. By using XGBoost and LightGBM, we have achieved high ROC-AUC score more than 0.90, and further have detected suspicious accesses from some ISPs that has no bot discrimination flag.

2021-08-02
Thapar, Shruti, Sharma, Sudhir Kumar.  2020.  Direct Trust-based Detection Algorithm for Preventing Jellyfish Attack in MANET. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA). :749–753.
The dynamic and adaptable characteristics of mobile ad hoc networks have made it a significant field for deploying various applications in wireless sensor networks. Increasing popularity of the portable devices is the main reason for the development of mobile ad hoc networks. Furthermore, the network does not require a fixed architecture and it is easy to deploy. This type of network is highly vulnerable to cyber-attacks as the nodes communicate with each other through a Wireless medium. The most critical attack in ad hoc network is jellyfish attack. In this research we have proposed a Direct Trust-based Detection Algorithm to detect and prevent jellyfish attack in MANET.
2021-03-09
Toutara, F., Spathoulas, G..  2020.  A distributed biometric authentication scheme based on blockchain. 2020 IEEE International Conference on Blockchain (Blockchain). :470–475.

Biometric authentication is the preferred authentication scheme in modern computing systems. While it offers enhanced usability, it also requires cautious handling of sensitive users' biometric templates. In this paper, a distributed scheme that eliminates the requirement for a central node that holds users' biometric templates is presented. This is replaced by an Ethereum/IPFS combination to which the templates of the users are stored in a homomorphically encrypted form. The scheme enables the biometric authentication of the users by any third party service, while the actual biometric templates of the user never leave his device in non encrypted form. Secure authentication of users in enabled, while sensitive biometric data are not exposed to anyone. Experiments show that the scheme can be applied as an authentication mechanism with minimal time overhead.

2021-02-03
Clark, D. J., Turnbull, B..  2020.  Experiment Design for Complex Immersive Visualisation. 2020 Military Communications and Information Systems Conference (MilCIS). :1—5.

Experimentation focused on assessing the value of complex visualisation approaches when compared with alternative methods for data analysis is challenging. The interaction between participant prior knowledge and experience, a diverse range of experimental or real-world data sets and a dynamic interaction with the display system presents challenges when seeking timely, affordable and statistically relevant experimentation results. This paper outlines a hybrid approach proposed for experimentation with complex interactive data analysis tools, specifically for computer network traffic analysis. The approach involves a structured survey completed after free engagement with the software platform by expert participants. The survey captures objective and subjective data points relating to the experience with the goal of making an assessment of software performance which is supported by statistically significant experimental results. This work is particularly applicable to field of network analysis for cyber security and also military cyber operations and intelligence data analysis.

2021-05-13
Monakhov, Yuri, Monakhov, Mikhail, Telny, Andrey, Mazurok, Dmitry, Kuznetsova, Anna.  2020.  Improving Security of Neural Networks in the Identification Module of Decision Support Systems. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :571–574.
In recent years, neural networks have been implemented while solving various tasks. Deep learning algorithms provide state of the art performance in computer vision, NLP, speech recognition, speaker recognition and many other fields. In spite of the good performance, neural networks have significant drawback- they have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. While being imperceptible to a human eye, such perturbations lead to significant drop in classification accuracy. It is demonstrated by many studies related to neural network security. Considering the pros and cons of neural networks, as well as a variety of their applications, developing of the methods to improve the robustness of neural networks against adversarial attacks becomes an urgent task. In the article authors propose the “minimalistic” attacker model of the decision support system identification unit, adaptive recommendations on security enhancing, and a set of protective methods. Suggested methods allow for significant increase in classification accuracy under adversarial attacks, as it is demonstrated by an experiment outlined in this article.
2021-08-17
Tseng, Chia-Wei, Wu, Li-Fan, Hsu, Shih-Chun, Yu, Sheng-Wang.  2020.  IPv6 DoS Attacks Detection Using Machine Learning Enhanced IDS in SDN/NFV Environment. 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS). :263–266.
The rapid growth of IPv6 traffic makes security issues become more important. This paper proposes an IPv6 network security system that integrates signature-based Intrusion Detection Systems (IDS) and machine learning classification technologies to improve the accuracy of IPv6 denial-of-service (DoS) attacks detection. In addition, this paper has also enhanced IPv6 network security defense capabilities through software-defined networking (SDN) and network function virtualization (NFV) technologies. The experimental results prove that the detection and defense mechanisms proposed in this paper can effectively strengthen IPv6 network security.
2021-06-01
Naderi, Pooria Taghizadeh, Taghiyareh, Fattaneh.  2020.  LookLike: Similarity-based Trust Prediction in Weighted Sign Networks. 2020 6th International Conference on Web Research (ICWR). :294–298.
Trust network is widely considered to be one of the most important aspects of social networks. It has many applications in the field of recommender systems and opinion formation. Few researchers have addressed the problem of trust/distrust prediction and, it has not yet been established whether the similarity measures can do trust prediction. The present paper aims to validate that similar users have related trust relationships. To predict trust relations between two users, the LookLike algorithm was introduced. Then we used the LookLike algorithm results as new features for supervised classifiers to predict the trust/distrust label. We chose a list of similarity measures to examined our claim on four real-world trust network datasets. The results demonstrated that there is a strong correlation between users' similarity and their opinion on trust networks. Due to the tight relation between trust prediction and truth discovery, we believe that our similarity-based algorithm could be a promising solution in their challenging domains.
2021-02-23
Liao, D., Huang, S., Tan, Y., Bai, G..  2020.  Network Intrusion Detection Method Based on GAN Model. 2020 International Conference on Computer Communication and Network Security (CCNS). :153—156.

The existing network intrusion detection methods have less label samples in the training process, and the detection accuracy is not high. In order to solve this problem, this paper designs a network intrusion detection method based on the GAN model by using the adversarial idea contained in the GAN. The model enhances the original training set by continuously generating samples, which expanding the label sample set. In order to realize the multi-classification of samples, this paper transforms the previous binary classification model of the generated adversarial network into a supervised learning multi-classification model. The loss function of training is redefined, so that the corresponding training method and parameter setting are obtained. Under the same experimental conditions, several performance indicators are used to compare the detection ability of the proposed method, the original classification model and other models. The experimental results show that the method proposed in this paper is more stable, robust, accurate detection rate, has good generalization ability, and can effectively realize network intrusion detection.

2021-01-18
Naganuma, K., Suzuki, T., Yoshino, M., Takahashi, K., Kaga, Y., Kunihiro, N..  2020.  New Secret Key Management Technology for Blockchains from Biometrics Fuzzy Signature. 2020 15th Asia Joint Conference on Information Security (AsiaJCIS). :54–58.

Blockchain technology is attracting attention as an innovative system for decentralized payments in fields such as financial area. On the other hand, in a decentralized environment, management of a secret key used for user authentication and digital signature becomes a big issue because if a user loses his/her secret key, he/she will also lose assets on the blockchain. This paper describes the secret key management issues in blockchain systems and proposes a solution using a biometrics-based digital signature scheme. In our proposed system, a secret key to be used for digital signature is generated from the user's biometric information each time and immediately deleted from the memory after using it. Therefore, our blockchain system has the advantage that there is no need for storage for storing secret keys throughout the system. As a result, the user does not have a risk of losing the key management devices and can prevent attacks from malware that steals the secret key.

2021-05-25
Baccari, Sihem, Touati, Haifa, Hadded, Mohamed, Muhlethaler, Paul.  2020.  Performance Impact Analysis of Security Attacks on Cross-Layer Routing Protocols in Vehicular Ad hoc Networks. 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1—6.

Recently, several cross-layer protocols have been designed for vehicular networks to optimize data dissemination by ensuring internal communications between routing and MAC layers. In this context, a cross-layer protocol, called TDMA-aware Routing Protocol for Multi-hop communications (TRPM), was proposed in order to efficiently select a relay node based on time slot scheduling information obtained from the MAC layer. However, due to the constant evolution of cyber-attacks on the routing and MAC layers, data dissemination in vehicular networks is vulnerable to several types of attack. In this paper, we identify the different attack models that can disrupt the cross-layer operation of the TRPM protocol and assess their impact on performance through simulation. Several new vulnerabilities related to the MAC slot scheduling process are identified. Exploiting of these vulnerabilities would lead to severe channel capacity wastage where up to half of the free slots could not be reserved.

2021-02-10
Kishimoto, K., Taniguchi, Y., Iguchi, N..  2020.  A Practical Exercise System Using Virtual Machines for Learning Cross-Site Scripting Countermeasures. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1—2.

Cross-site scripting (XSS) is an often-occurring major attack that developers should consider when developing web applications. We develop a system that can provide practical exercises for learning how to create web applications that are secure against XSS. Our system utilizes free software and virtual machines, allowing low-cost, safe, and practical exercises. By using two virtual machines as the web server and the attacker host, the learner can conduct exercises demonstrating both XSS countermeasures and XSS attacks. In our system, learners use a web browser to learn and perform exercises related to XSS. Experimental evaluations confirm that the proposed system can support learning of XSS countermeasures.

2021-02-16
Monakhov, Y. M., Monakhov, M. Y., Telny, A. V., Kuznetsova, A. P..  2020.  Prediction of the Information Security State of the Protected Object Using Recurrent Correction. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :602—605.

This article presents the modeling results of the ability to improve the accuracy of predicting the state of information security in the space of parameters of its threats. Information security of the protected object is considered as a dynamic system. Security threats to the protected object are used as the security system parameters most qualitatively and fully describing its behavior. The number of threats considered determines the dimension of the security state space. Based on the dynamic properties of changes in information security threats, the space region of the security system possible position at the moments of subsequent measurements of its state (a comprehensive security audit) is predicted. The corrected state of the information security system is considered to be the intersection of the area of subsequent measurement of the state of the system (integrated security audit) with the previously predicted area of the parameter space. Such a way to increase the accuracy of determining the state of a dynamic system in the space of its parameters can be called dynamic recurrent correction method. It is possible to use this method if the comprehensive security audit frequency is significantly higher than the frequency of monitoring changes in the dynamics of specific threats to information security. In addition, the data of the audit results and the errors of their receipt must be statistically independent with the results of monitoring changes in the dynamics of specific threats to information security. Improving the accuracy of the state of information security assessment in the space of the parameters of its threats can be used for various applications, including clarification of the communication channels characteristics, increasing the availability and efficiency of the telecommunications network, if it is an object of protection.