Biblio

Found 2063 results

Filters: First Letter Of Last Name is Y  [Clear All Filters]
2018-04-11
Picek, Stjepan, Mariot, Luca, Yang, Bohan, Jakobovic, Domagoj, Mentens, Nele.  2017.  Design of S-Boxes Defined with Cellular Automata Rules. Proceedings of the Computing Frontiers Conference. :409–414.

The aim of this paper is to find cellular automata (CA) rules that are used to describe S-boxes with good cryptographic properties and low implementation cost. Up to now, CA rules have been used in several ciphers to define an S-box, but in all those ciphers, the same CA rule is used. This CA rule is best known as the one defining the Keccak $\chi$ transformation. Since there exists no straightforward method for constructing CA rules that define S-boxes with good cryptographic/implementation properties, we use a special kind of heuristics for that – Genetic Programming (GP). Although it is not possible to theoretically prove the efficiency of such a method, our experimental results show that GP is able to find a large number of CA rules that define good S-boxes in a relatively easy way. We focus on the 4 x 4 and 5 x 5 sizes and we implement the S-boxes in hardware to examine implementation properties like latency, area, and power. Particularly interesting is the internal encoding of the solutions in the considered heuristics using combinatorial circuits; this makes it easy to approximate S-box implementation properties like latency and area a priori.

2017-12-20
Yin, S., Bae, C., Kim, S. J., Seo, J. s.  2017.  Designing ECG-based physical unclonable function for security of wearable devices. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). :3509–3512.

As a plethora of wearable devices are being introduced, significant concerns exist on the privacy and security of personal data stored on these devices. Expanding on recent works of using electrocardiogram (ECG) as a modality for biometric authentication, in this work, we investigate the possibility of using personal ECG signals as the individually unique source for physical unclonable function (PUF), which eventually can be used as the key for encryption and decryption engines. We present new signal processing and machine learning algorithms that learn and extract maximally different ECG features for different individuals and minimally different ECG features for the same individual over time. Experimental results with a large 741-subject in-house ECG database show that the distributions of the intra-subject (same person) Hamming distance of extracted ECG features and the inter-subject Hamming distance have minimal overlap. 256-b random numbers generated from the ECG features of 648 (out of 741) subjects pass the NIST randomness tests.

2018-05-16
2018-08-23
Xu, W., Yan, Z., Tian, Y., Cui, Y., Lin, J..  2017.  Detection with compressive measurements corrupted by sparse errors. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–5.

Compressed sensing can represent the sparse signal with a small number of measurements compared to Nyquist-rate samples. Considering the high-complexity of reconstruction algorithms in CS, recently compressive detection is proposed, which performs detection directly in compressive domain without reconstruction. Different from existing work that generally considers the measurements corrupted by dense noises, this paper studies the compressive detection problem when the measurements are corrupted by both dense noises and sparse errors. The sparse errors exist in many practical systems, such as the ones affected by impulse noise or narrowband interference. We derive the theoretical performance of compressive detection when the sparse error is either deterministic or random. The theoretical results are further verified by simulations.

2017-07-19
Yu Wang, University of Illinois at Urbana-Champaign, Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Differential Privacy and Entropy in Distributed Feedback Systems: Minimizing Mechanisms and Performance Trade-offs. IEEE Transactions on Network Control Systems. 4(1)

In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal preferences. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent’s data and the performance of the control system.We formalize privacy in terms of differential privacy of agents’ preference vectors. The overall control system consists of N agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error.We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as O(T 3/Nε2 ), where T is the time horizon and ε is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives ε-differential privacy.We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise.

2018-11-19
Liang, Chen, Yang, Xiao, Wham, Drew, Pursel, Bart, Passonneaur, Rebecca, Giles, C. Lee.  2017.  Distractor Generation with Generative Adversarial Nets for Automatically Creating Fill-in-the-Blank Questions. Proceedings of the Knowledge Capture Conference. :33:1–33:4.

Distractor generation is a crucial step for fill-in-the-blank question generation. We propose a generative model learned from training generative adversarial nets (GANs) to create useful distractors. Our method utilizes only context information and does not use the correct answer, which is completely different from previous Ontology-based or similarity-based approaches. Trained on the Wikipedia corpus, the proposed model is able to predict Wiki entities as distractors. Our method is evaluated on two biology question datasets collected from Wikipedia and actual college-level exams. Experimental results show that our context-based method achieves comparable performance to a frequently used word2vec-based method for the Wiki dataset. In addition, we propose a second-stage learner to combine the strengths of the two methods, which further improves the performance on both datasets, with 51.7% and 48.4% of generated distractors being acceptable.

2018-05-15
Yang, I..  2017.  Distributionally robust stochastic control with conic confidence sets. Proceedings of the 56th IEEE Conference on Decision and Control.
2018-02-27
Zhang, Guoming, Yan, Chen, Ji, Xiaoyu, Zhang, Tianchen, Zhang, Taimin, Xu, Wenyuan.  2017.  DolphinAttack: Inaudible Voice Commands. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :103–117.

Speech recognition (SR) systems such as Siri or Google Now have become an increasingly popular human-computer interaction method, and have turned various systems into voice controllable systems (VCS). Prior work on attacking VCS shows that the hidden voice commands that are incomprehensible to people can control the systems. Hidden voice commands, though "hidden", are nonetheless audible. In this work, we design a totally inaudible attack, DolphinAttack, that modulates voice commands on ultrasonic carriers (e.g., f textgreater 20 kHz) to achieve inaudibility. By leveraging the nonlinearity of the microphone circuits, the modulated low-frequency audio commands can be successfully demodulated, recovered, and more importantly interpreted by the speech recognition systems. We validated DolphinAttack on popular speech recognition systems, including Siri, Google Now, Samsung S Voice, Huawei HiVoice, Cortana and Alexa. By injecting a sequence of inaudible voice commands, we show a few proof-of-concept attacks, which include activating Siri to initiate a FaceTime call on iPhone, activating Google Now to switch the phone to the airplane mode, and even manipulating the navigation system in an Audi automobile. We propose hardware and software defense solutions, and suggest to re-design voice controllable systems to be resilient to inaudible voice command attacks.

2018-07-06
Sun, R., Yuan, X., Lee, A., Bishop, M., Porter, D. E., Li, X., Gregio, A., Oliveira, D..  2017.  The dose makes the poison \#x2014; Leveraging uncertainty for effective malware detection. 2017 IEEE Conference on Dependable and Secure Computing. :123–130.

Malware has become sophisticated and organizations don't have a Plan B when standard lines of defense fail. These failures have devastating consequences for organizations, such as sensitive information being exfiltrated. A promising avenue for improving the effectiveness of behavioral-based malware detectors is to combine fast (usually not highly accurate) traditional machine learning (ML) detectors with high-accuracy, but time-consuming, deep learning (DL) models. The main idea is to place software receiving borderline classifications by traditional ML methods in an environment where uncertainty is added, while software is analyzed by time-consuming DL models. The goal of uncertainty is to rate-limit actions of potential malware during deep analysis. In this paper, we describe Chameleon, a Linux-based framework that implements this uncertain environment. Chameleon offers two environments for its OS processes: standard - for software identified as benign by traditional ML detectors - and uncertain - for software that received borderline classifications analyzed by ML methods. The uncertain environment will bring obstacles to software execution through random perturbations applied probabilistically on selected system calls. We evaluated Chameleon with 113 applications from common benchmarks and 100 malware samples for Linux. Our results show that at threshold 10%, intrusive and non-intrusive strategies caused approximately 65% of malware to fail accomplishing their tasks, while approximately 30% of the analyzed benign software to meet with various levels of disruption (crashed or hampered). We also found that I/O-bound software was three times more affected by uncertainty than CPU-bound software.

2018-05-24
Kim, H., Yoo, D., Kang, J. S., Yeom, Y..  2017.  Dynamic Ransomware Protection Using Deterministic Random Bit Generator. 2017 IEEE Conference on Application, Information and Network Security (AINS). :64–68.

Ransomware has become a very significant cyber threat. The basic idea of ransomware was presented in the form of a cryptovirus in 1995. However, it was considered as merely a conceptual topic since then for over a decade. In 2017, ransomware has become a reality, with several famous cases of ransomware having compromised important computer systems worldwide. For example, the damage caused by CryptoLocker and WannaCry is huge, as well as global. They encrypt victims' files and require user's payment to decrypt them. Because they utilize public key cryptography, the key for recovery cannot be found in the footprint of the ransomware on the victim's system. Therefore, once infected, the system cannot be recovered without paying for restoration. Various methods to deal this threat have been developed by antivirus researchers and experts in network security. However, it is believed that cryptographic defense is infeasible because recovering a victim's files is computationally as difficult as breaking a public key cryptosystem. Quite recently, various approaches to protect the crypto-API of an OS from malicious codes have been proposed. Most ransomware generate encryption keys using the random number generation service provided by the victim's OS. Thus, if a user can control all random numbers generated by the system, then he/she can recover the random numbers used by the ransomware for the encryption key. In this paper, we propose a dynamic ransomware protection method that replaces the random number generator of the OS with a user-defined generator. As the proposed method causes the virus program to generate keys based on the output from the user-defined generator, it is possible to recover an infected file system by reproducing the keys the attacker used to perform the encryption.

2018-05-27
2018-03-05
Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

2018-05-27
2018-05-25
2018-11-14
Hernandez, Grant, Fowze, Farhaan, Tian, Dave(Jing), Yavuz, Tuba, Butler, Kevin R.B..  2017.  FirmUSB: Vetting USB Device Firmware Using Domain Informed Symbolic Execution. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2245–2262.

The USB protocol has become ubiquitous, supporting devices from high-powered computing devices to small embedded devices and control systems. USB's greatest feature, its openness and expandability, is also its weakness, and attacks such as BadUSB exploit the unconstrained functionality afforded to these devices as a vector for compromise. Fundamentally, it is virtually impossible to know whether a USB device is benign or malicious. This work introduces FirmUSB, a USB-specific firmware analysis framework that uses domain knowledge of the USB protocol to examine firmware images and determine the activity that they can produce. Embedded USB devices use microcontrollers that have not been well studied by the binary analysis community, and our work demonstrates how lifters into popular intermediate representations for analysis can be built, as well as the challenges of doing so. We develop targeting algorithms and use domain knowledge to speed up these processes by a factor of 7 compared to unconstrained fully symbolic execution. We also successfully find malicious activity in embedded 8051 firmwares without the use of source code. Finally, we provide insights into the challenges of symbolic analysis on embedded architectures and provide guidance on improving tools to better handle this important class of devices.

2018-02-14
Yang, Y., Liu, X., Deng, R. H., Weng, J..  2017.  Flexible Wildcard Searchable Encryption System. IEEE Transactions on Services Computing. PP:1–1.

Searchable encryption is an important technique for public cloud storage service to provide user data confidentiality protection and at the same time allow users performing keyword search over their encrypted data. Previous schemes only deal with exact or fuzzy keyword search to correct some spelling errors. In this paper, we propose a new wildcard searchable encryption system to support wildcard keyword queries which has several highly desirable features. First, our system allows multiple keywords search in which any queried keyword may contain zero, one or two wildcards, and a wildcard may appear in any position of a keyword and represent any number of symbols. Second, it supports simultaneous search on multiple data owner’s data using only one trapdoor. Third, it provides flexible user authorization and revocation to effectively manage search and decryption privileges. Fourth, it is constructed based on homomorphic encryption rather than Bloom filter and hence completely eliminates the false probability caused by Bloom filter. Finally, it achieves a high level of privacy protection since matching results are unknown to the cloud server in the test phase. The proposed system is thoroughly analyzed and is proved secure. Extensive experimental results indicate that our system is efficient compared with other existing wildcard searchable encryption schemes in the public key setting.

2018-05-11
2018-02-15
Dai, F., Shi, Y., Meng, N., Wei, L., Ye, Z..  2017.  From Bitcoin to cybersecurity: A comparative study of blockchain application and security issues. 2017 4th International Conference on Systems and Informatics (ICSAI). :975–979.

With the accelerated iteration of technological innovation, blockchain has rapidly become one of the hottest Internet technologies in recent years. As a decentralized and distributed data management solution, blockchain has restored the definition of trust by the embedded cryptography and consensus mechanism, thus providing security, anonymity and data integrity without the need of any third party. But there still exists some technical challenges and limitations in blockchain. This paper has conducted a systematic research on current blockchain application in cybersecurity. In order to solve the security issues, the paper analyzes the advantages that blockchain has brought to cybersecurity and summarizes current research and application of blockchain in cybersecurity related areas. Through in-depth analysis and summary of the existing work, the paper summarizes four major security issues of blockchain and performs a more granular analysis of each problem. Adopting an attribute-based encryption method, the paper also puts forward an enhanced access control strategy.

2018-07-18
Yin, Delina Beh Mei, Omar, Shariman, Talip, Bazilah A., Muklas, Amalia, Norain, Nur Afiqah Mohd, Othman, Abu Talib.  2017.  Fusion of Face Recognition and Facial Expression Detection for Authentication: A Proposed Model. Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication. :21:1–21:8.

The paper presents a novel model of hybrid biometric-based authentication. Currently, the recognition accuracy of a single biometric verification system is often much reduced due to many factors such as the environment, user mode and physiological defects of an individual. Apparently, the enrolment of static biometric is highly vulnerable to impersonation attack. Due to the fact of single biometric authentication only offers one factor of verification, we proposed to hybrid two biometric attributes that consist of physiological and behavioural trait. In this study, we utilise the static and dynamic features of a human face. In order to extract the important features from a face, the primary steps taken are image pre-processing and face detection. Apparently, to distinguish between a genuine user or an imposter, the first authentication is to verify the user's identity through face recognition. Solely depending on a single modal biometric is possible to lead to false acceptance when two or more similar face features may result in a relatively high match score. However, it is found the False Acceptance Rate is 0.55% whereas the False Rejection Rate is 7%. By reason of the security discrepancies in the mentioned condition, therefore we proposed a fusion method whereby a genuine user will select a facial expression from the seven universal expression (i.e. happy, sad, anger, disgust, surprise, fear and neutral) as enrolled earlier in the database. For the proof of concept, it is proven in our results that even there are two or more users coincidently have the same face features, the selected facial expression will act as a password to be prominently distinguished a genuine or impostor user.

2018-05-17
2018-02-02
Qi, C., Wu, J., Chen, H., Yu, H., Hu, H., Cheng, G..  2017.  Game-Theoretic Analysis for Security of Various Software-Defined Networking (SDN) Architectures. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). :1–5.

Security evaluation of diverse SDN frameworks is of significant importance to design resilient systems and deal with attacks. Focused on SDN scenarios, a game-theoretic model is proposed to analyze their security performance in existing SDN architectures. The model can describe specific traits in different structures, represent several types of information of players (attacker and defender) and quantitatively calculate systems' reliability. Simulation results illustrate dynamic SDN structures have distinct security improvement over static ones. Besides, effective dynamic scheduling mechanisms adopted in dynamic systems can enhance their security further.