Biblio

Found 2636 results

Filters: First Letter Of Last Name is Z  [Clear All Filters]
2020-05-04
Zou, Zhenwan, Chen, Jia, Hou, Yingsa, Song, Panpan, He, Ling, Yang, Huiting, Wang, Bin.  2019.  Design and Implementation of a New Intelligent Substation Network Security Defense System. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:2709–2713.
In order to enhance the network security protection level of intelligent substation, this paper puts forward a model of intelligent substation network security defense system through the analysis of intelligent substation network security risk and protection demand, and using example proved the feasibility and effectiveness of the defense system. It is intelligent substation network security protection provides a new solution.
2020-10-26
Xu, Mengmeng, Zhu, Hai, Wang, Juanjuan, Xu, Hengzhou.  2019.  Dynamic and Disjoint Routing Mechanism for Protecting Source Location Privacy in WSNs. 2019 15th International Conference on Computational Intelligence and Security (CIS). :310–314.
In this paper, we investigate the protection mechanism of source location privacy, in which back-tracing attack is performed by an adversary. A dynamic and disjoint routing mechanism (DDRM) is proposed to achieve a strong protection for source location privacy in an energy-efficient manner. Specially, the selection of intermediate node renders the message transmission randomly and flexibly. By constructing k disjoint paths, an adversary could not receive sufficient messages to locate the source node. Simulation results illustrate the effectiveness of the proposed mechanism.
2020-09-18
Yudin, Oleksandr, Ziubina, Ruslana, Buchyk, Serhii, Frolov, Oleg, Suprun, Olha, Barannik, Natalia.  2019.  Efficiency Assessment of the Steganographic Coding Method with Indirect Integration of Critical Information. 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT). :36—40.
The presented method of encoding and steganographic embedding of a series of bits for the hidden message was first developed by modifying the digital platform (bases) of the elements of the image container. Unlike other methods, steganographic coding and embedding is accomplished by changing the elements of the image fragment, followed by the formation of code structures for the established structure of the digital representation of the structural elements of the image media image. The method of estimating quantitative indicators of embedded critical data is presented. The number of bits of the container for the developed method of steganographic coding and embedding of critical information is estimated. The efficiency of the presented method is evaluated and the comparative analysis of the value of the embedded digital data in relation to the method of weight coefficients of the discrete cosine transformation matrix, as well as the comparative analysis of the developed method of steganographic coding, compared with the Koch and Zhao methods to determine the embedded data resistance against attacks of various types. It is determined that for different values of the quantization coefficient, the most critical are the built-in containers of critical information, which are built by changing the part of the digital video data platform depending on the size of the digital platform and the number of bits of the built-in container.
2020-06-02
Zhou, Wei, Wang, Jin, Li, Lingzhi, Wang, Jianping, Lu, Kejie, Zhou, Xiaobo.  2019.  An Efficient Secure Coded Edge Computing Scheme Using Orthogonal Vector. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :100—107.

In recent years, Edge Computing (EC) has attracted increasing attention for its advantages in handling latencysensitive and compute-intensive applications. It is becoming a widespread solution to solve the last mile problem of cloud computing. However, in actual EC deployments, data confidentiality becomes an unignorable issue because edge devices may be untrusted. In this paper, a secure and efficient edge computing scheme based on linear coding is proposed. Generally, linear coding can be utilized to achieve data confidentiality by encoding random blocks with original data blocks before they are distributed to unreliable edge nodes. However, the addition of a large amount of irrelevant random blocks also brings great communication overhead and high decoding complexities. In this paper, we focus on the design of secure coded edge computing using orthogonal vector to protect the information theoretic security of the data matrix stored on edge nodes and the input matrix uploaded by the user device, while to further reduce the communication overhead and decoding complexities. In recent years, Edge Computing (EC) has attracted increasing attention for its advantages in handling latencysensitive and compute-intensive applications. It is becoming a widespread solution to solve the last mile problem of cloud computing. However, in actual EC deployments, data confidentiality becomes an unignorable issue because edge devices may be untrusted. In this paper, a secure and efficient edge computing scheme based on linear coding is proposed. Generally, linear coding can be utilized to achieve data confidentiality by encoding random blocks with original data blocks before they are distributed to unreliable edge nodes. However, the addition of a large amount of irrelevant random blocks also brings great communication overhead and high decoding complexities. In this paper, we focus on the design of secure coded edge computing using orthogonal vector to protect the information theoretic security of the data matrix stored on edge nodes and the input matrix uploaded by the user device, while to further reduce the communication overhead and decoding complexities.

2020-04-13
Wu, Qiong, Zhang, Haitao, Du, Peilun, Li, Ye, Guo, Jianli, He, Chenze.  2019.  Enabling Adaptive Deep Neural Networks for Video Surveillance in Distributed Edge Clouds. 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS). :525–528.
In the field of video surveillance, the demands of intelligent video analysis services based on Deep Neural Networks (DNNs) have grown rapidly. Although most existing studies focus on the performance of DNNs pre-deployed at remote clouds, the network delay caused by computation offloading from network cameras to remote clouds is usually long and sometimes unbearable. Edge computing can enable rich services and applications in close proximity to the network cameras. However, owing to the limited computing resources of distributed edge clouds, it is challenging to satisfy low latency and high accuracy requirements for all users, especially when the number of users surges. To address this challenge, we first formulate the intelligent video surveillance task scheduling problem that minimizes the average response time while meeting the performance requirements of tasks and prove that it is NP-hard. Second, we present an adaptive DNN model selection method to identify the most effective DNN model for each task by comparing the feature similarity between the input video segment and pre-stored training videos. Third, we propose a two-stage delay-aware graph searching approach that presents a beneficial trade-off between network delay and computing delay. Experimental results demonstrate the efficiency of our approach.
2020-11-16
Shen, N., Yeh, J., Chen, C., Chen, Y., Zhang, Y..  2019.  Ensuring Query Completeness in Outsourced Database Using Order-Preserving Encryption. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :776–783.
Nowadays database outsourcing has become business owners' preferred option and they are benefiting from its flexibility, reliability, and low cost. However, because database service providers cannot always be fully trusted and data owners will no longer have a direct control over their own data, how to make the outsourced data secure becomes a hot research topic. From the data integrity protection aspect, the client wants to make sure the data returned is correct, complete, and up-to-date. Previous research work in literature put more efforts on data correctness, while data completeness is still a challenging problem to solve. There are some existing works that tried to protect the completeness of data. Unfortunately, these solutions were considered not fully solving the problem because of their high communication or computation overhead. The implementations and limitations of existing works will be further discussed in this paper. From the data confidentiality protection aspect, order-preserving encryption (OPE) is a widely used encryption scheme in protecting data confidentiality. It allows the client to perform range queries and some other operations such as GROUP BY and ORDER BY over the OPE encrypted data. Therefore, it is worthy to develop a solution that allows user to verify the query completeness for an OPE encrypted database so that both data confidentiality and completeness are both protected. Inspired by this motivation, we propose a new data completeness protecting scheme by inserting fake tuples into databases. Both the real and fake tuples are OPE encrypted and thus the cloud server cannot distinguish among them. While our new scheme is much more efficient than all existing approaches, the level of security protection remains the same.
2020-08-24
Huang, Hao, Kazerooni, Maryam, Hossain-McKenzie, Shamina, Etigowni, Sriharsha, Zonouz, Saman, Davis, Katherine.  2019.  Fast Generation Redispatch Techniques for Automated Remedial Action Schemes. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). :1–8.
To ensure power system operational security, it not only requires security incident detection, but also automated intrusion response and recovery mechanisms to tolerate failures and maintain the system's functionalities. In this paper, we present a design procedure for remedial action schemes (RAS) that improves the power systems resiliency against accidental failures or malicious endeavors such as cyber attacks. A resilience-oriented optimal power flow is proposed, which optimizes the system security instead of the generation cost. To improve its speed for online application, a fast greedy algorithm is presented to narrow the search space. The proposed techniques are computationally efficient and are suitable for online RAS applications in large-scale power systems. To demonstrate the effectiveness of the proposed methods, there are two case studies with IEEE 24-bus and IEEE 118-bus systems.
2020-04-06
Chin, Paul, Cao, Yuan, Zhao, Xiaojin, Zhang, Leilei, Zhang, Fan.  2019.  Locking Secret Data in the Vault Leveraging Fuzzy PUFs. 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.

Physical Unclonable Functions (PUFs) are considered as an attractive low-cost security anchor. The unique features of PUFs are dependent on the Nanoscale variations introduced during the manufacturing variations. Most PUFs exhibit an unreliability problem due to aging and inherent sensitivity to the environmental conditions. As a remedy to the reliability issue, helper data algorithms are used in practice. A helper data algorithm generates and stores the helper data in the enrollment phase in a secure environment. The generated helper data are used then for error correction, which can transform the unique feature of PUFs into a reproducible key. The key can be used to encrypt secret data in the security scheme. In contrast, this work shows that the fuzzy PUFs can be used to secret important data directly by an error-tolerant protocol without the enrollment phase and error-correction algorithm. In our proposal, the secret data is locked in a vault leveraging the unique fuzzy pattern of PUF. Although the noise exists, the data can then be released only by this unique PUF. The evaluation was performed on the most prominent intrinsic PUF - DRAM PUF. The test results demonstrate that our proposal can reach an acceptable reconstruction rate in various environment. Finally, the security analysis of the new proposal is discussed.

2020-09-18
Yao, Bing, Zhao, Meimei, Mu, Yarong, Sun, Yirong, Zhang, Xiaohui, Zhang, Mingjun, Yang, Sihua.  2019.  Matrices From Topological Graphic Coding of Network Security. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:1992—1996.
Matrices as mathematical models have been used in each branch of scientific fields for hundred years. We propose a new type of matrices, called topological coding matrices (Topcode-matrices). Topcode-matrices show us the following advantages: Topcode-matrices can be saved in computer easily and run quickly in computation; since a Topcode-matrix corresponds two or more Topsnut-gpws, so Topcode-matrices can be used to encrypt networks such that the encrypted networks have higher security; Topcode-matrices can be investigated and applied by people worked in more domains; Topcode-matrices can help us to form new operations, new parameters and new topics of graph theory, such as vertex/edge splitting operations and connectivities of graphs. Several properties and applications on Topcode-matrices, and particular Topcode-matrices, as well as unknown problems are introduced.
2020-09-14
Liang, Xiao, Ma, Lixin, An, Ningyu, Jiang, Dongxiao, Li, Chenggang, Chen, Xiaona, Zhao, Lijiao.  2019.  Ontology Based Security Risk Model for Power Terminal Equipment. 2019 12th International Symposium on Computational Intelligence and Design (ISCID). 2:212–216.
IoT based technology are drastically accelerating the informationization development of the power grid system of China that consists of a huge number of power terminal devices interconnected by the network of electric power IoT. However, the networked power terminal equipment oriented cyberspace security has continually become a challenging problem as network attack is continually varying and evolving. In this paper, we concentrate on the security risk of power terminal equipment and their vulnerability based on ATP attack detection and defense. We first analyze the attack mechanism of APT security attack based on power terminal equipment. Based on the analysis of the security and attack of power IoT terminal device, an ontology-based knowledge representation method of power terminal device and its vulnerability is proposed.
2020-06-08
Tang, Deyou, Zhang, Yazhuo, Zeng, Qingmiao.  2019.  Optimization of Hardware-oblivious and Hardware-conscious Hash-join Algorithms on KNL. 2019 4th International Conference on Cloud Computing and Internet of Things (CCIOT). :24–28.
Investigation of hash join algorithm on multi-core and many-core platforms showed that carefully tuned hash join implementations could outperform simple hash joins on most multi-core servers. However, hardware-oblivious hash join has shown competitive performance on many-core platforms. Knights Landing (KNL) has received attention in the field of parallel computing for its massively data-parallel nature and high memory bandwidth, but both hardware-oblivious and hardware-conscious hash join algorithms have not been systematically discussed and evaluated for KNL's characteristics (high bandwidth, cluster mode, etc.). In this paper, we present the design and implementation of the state-of-the-art hardware-oblivious and hardware-conscious hash joins that are tuned to exploit various KNL hardware characteristics. Using a thorough evaluation, we show that:1) Memory allocation strategies based on KNL's architecture are effective for both hardware-oblivious and hardware-conscious hash join algorithms; 2) In order to improve the efficiency of the hash join algorithms, hardware architecture features are still non-negligible factors.
2020-04-17
Alim, Adil, Zhao, Xujiang, Cho, Jin-Hee, Chen, Feng.  2019.  Uncertainty-Aware Opinion Inference Under Adversarial Attacks. 2019 IEEE International Conference on Big Data (Big Data). :6—15.

Inference of unknown opinions with uncertain, adversarial (e.g., incorrect or conflicting) evidence in large datasets is not a trivial task. Without proper handling, it can easily mislead decision making in data mining tasks. In this work, we propose a highly scalable opinion inference probabilistic model, namely Adversarial Collective Opinion Inference (Adv-COI), which provides a solution to infer unknown opinions with high scalability and robustness under the presence of uncertain, adversarial evidence by enhancing Collective Subjective Logic (CSL) which is developed by combining SL and Probabilistic Soft Logic (PSL). The key idea behind the Adv-COI is to learn a model of robust ways against uncertain, adversarial evidence which is formulated as a min-max problem. We validate the out-performance of the Adv-COI compared to baseline models and its competitive counterparts under possible adversarial attacks on the logic-rule based structured data and white and black box adversarial attacks under both clean and perturbed semi-synthetic and real-world datasets in three real world applications. The results show that the Adv-COI generates the lowest mean absolute error in the expected truth probability while producing the lowest running time among all.

2020-12-11
Zhang, W., Byna, S., Niu, C., Chen, Y..  2019.  Exploring Metadata Search Essentials for Scientific Data Management. 2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC). :83—92.

Scientific experiments and observations store massive amounts of data in various scientific file formats. Metadata, which describes the characteristics of the data, is commonly used to sift through massive datasets in order to locate data of interest to scientists. Several indexing data structures (such as hash tables, trie, self-balancing search trees, sparse array, etc.) have been developed as part of efforts to provide an efficient method for locating target data. However, efficient determination of an indexing data structure remains unclear in the context of scientific data management, due to the lack of investigation on metadata, metadata queries, and corresponding data structures. In this study, we perform a systematic study of the metadata search essentials in the context of scientific data management. We study a real-world astronomy observation dataset and explore the characteristics of the metadata in the dataset. We also study possible metadata queries based on the discovery of the metadata characteristics and evaluate different data structures for various types of metadata attributes. Our evaluation on real-world dataset suggests that trie is a suitable data structure when prefix/suffix query is required, otherwise hash table should be used. We conclude our study with a summary of our findings. These findings provide a guideline and offers insights in developing metadata indexing methodologies for scientific applications.

2020-11-02
Wang, Jiawei, Zhang, Yuejun, Wang, Pengjun, Luan, Zhicun, Xue, Xiaoyong, Zeng, Xiaoyang, Yu, Qiaoyan.  2019.  An Orthogonal Algorithm for Key Management in Hardware Obfuscation. 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—4.

The globalization of supply chain makes semiconductor chips susceptible to various security threats. Design obfuscation techniques have been widely investigated to thwart intellectual property (IP) piracy attacks. Key distribution among IP providers, system integration team, and end users remains as a challenging problem. This work proposes an orthogonal obfuscation method, which utilizes an orthogonal matrix to authenticate obfuscation keys, rather than directly examining each activation key. The proposed method hides the keys by using an orthogonal obfuscation algorithm to increasing the key retrieval time, such that the primary keys for IP cores will not be leaked. The simulation results show that the proposed method reduces the key retrieval time by 36.3% over the baseline. The proposed obfuscation methods have been successfully applied to ISCAS'89 benchmark circuits. Experimental results indicate that the orthogonal obfuscation only increases the area by 3.4% and consumes 4.7% more power than the baseline1.

2020-07-16
Zhang, Shisheng, Wang, Chencheng, Wang, Qishu.  2019.  Research on Time Concealed Channel Technology of Cloud Computing Platform Based on Shared Memory. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:904—909.

Security issues severely restrict the development and popularization of cloud computing. As a way of data leakage, covert channel greatly threatens the security of cloud platform. This paper introduces the types and research status of covert channels, and discusses the classical detection and interference methods of time-covert channels on cloud platforms for shared memory time covert channels.

2020-12-02
Mukaidani, H., Saravanakumar, R., Xu, H., Zhuang, W..  2019.  Robust Nash Static Output Feedback Strategy for Uncertain Markov Jump Delay Stochastic Systems. 2019 IEEE 58th Conference on Decision and Control (CDC). :5826—5831.

In this paper, we propose a robust Nash strategy for a class of uncertain Markov jump delay stochastic systems (UMJDSSs) via static output feedback (SOF). After establishing the extended bounded real lemma for UMJDSS, the conditions for the existence of a robust Nash strategy set are determined by means of cross coupled stochastic matrix inequalities (CCSMIs). In order to solve the SOF problem, an heuristic algorithm is developed based on the algebraic equations and the linear matrix inequalities (LMIs). In particular, it is shown that robust convergence is guaranteed under a new convergence condition. Finally, a practical numerical example based on the congestion control for active queue management is provided to demonstrate the reliability and usefulness of the proposed design scheme.

2020-12-01
Wang, S., Mei, Y., Park, J., Zhang, M..  2019.  A Two-Stage Genetic Programming Hyper-Heuristic for Uncertain Capacitated Arc Routing Problem. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :1606—1613.

Genetic Programming Hyper-heuristic (GPHH) has been successfully applied to automatically evolve effective routing policies to solve the complex Uncertain Capacitated Arc Routing Problem (UCARP). However, GPHH typically ignores the interpretability of the evolved routing policies. As a result, GP-evolved routing policies are often very complex and hard to be understood and trusted by human users. In this paper, we aim to improve the interpretability of the GP-evolved routing policies. To this end, we propose a new Multi-Objective GP (MOGP) to optimise the performance and size simultaneously. A major issue here is that the size is much easier to be optimised than the performance, and the search tends to be biased to the small but poor routing policies. To address this issue, we propose a simple yet effective Two-Stage GPHH (TS-GPHH). In the first stage, only the performance is to be optimised. Then, in the second stage, both objectives are considered (using our new MOGP). The experimental results showed that TS-GPHH could obtain much smaller and more interpretable routing policies than the state-of-the-art single-objective GPHH, without deteriorating the performance. Compared with traditional MOGP, TS-GPHH can obtain a much better and more widespread Pareto front.

2021-01-22
Chen, P., Liu, X., Zhang, J., Yu, C., Pu, H., Yao, Y..  2019.  Improvement of PRIME Protocol Based on Chaotic Cryptography. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). :1–5.

PRIME protocol is a narrowband power line communication protocol whose security is based on Advanced Encryption Standard. However, the key expansion process of AES algorithm is not unidirectional, and each round of keys are linearly related to each other, it is less difficult for eavesdroppers to crack AES encryption algorithm, leading to threats to the security of PRIME protocol. To solve this problem, this paper proposes an improvement of PRIME protocol based on chaotic cryptography. The core of this method is to use Chebyshev chaotic mapping and Logistic chaotic mapping to generate each round of key in the key expansion process of AES algorithm, In this way, the linear correlation between the key rounds can be reduced, making the key expansion process unidirectional, increasing the crack difficulty of AES encryption algorithm, and improving the security of PRIME protocol.

2020-01-21
Zhou, Lin, Feng, Jing, He, Haiguang, Mao, Zhijie, Chen, Yingmei, Gao, Mei, He, Zhuzhen.  2019.  A Construction Method of Security Mechanism Requirement for Wireless Access System Based on CC Standard. 2019 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :369–372.

Aiming at the incomplete and incomplete security mechanism of wireless access system in emergency communication network, this paper proposes a security mechanism requirement construction method for wireless access system based on security evaluation standard. This paper discusses the requirements of security mechanism construction in wireless access system from three aspects: the definition of security issues, the construction of security functional components and security assurance components. This method can comprehensively analyze the security threats and security requirements of wireless access system in emergency communication network, and can provide correct and reasonable guidance and reference for the establishment of security mechanism.

2019-09-30
Onufer, J., Ziman, J., Duranka, P., Kravčák, J..  2019.  The Study of Closure Domain Structure Dynamics in Bistable Microwires Using the Technique of Three-Level Field Pulses. IEEE Transactions on Magnetics. 55:1–6.

The process of release of a single domain wall from the closure domain structure at the microwire ends and the process of nucleation of the reversed domain in regions far from the microwire ends were studied using the technique that consists in determining the critical parameters of the rectangular magnetic field pulse (magnitude-Hpc and length-τc) needed for free domain wall production. Since these processes can be influenced by the magnitude of the magnetic field before or after the application of the field pulse (Hi, τ), we propose a modified experiment in which the so-called three-level pulse is used. The three-level pulse starts from the first level, then continues with the second measuring rectangular pulse (Hi, τ), which ends at the third field level. Based on the results obtained in experiments using three-level field pulses, it has been shown that reversed domains are not present in the remanent state in regions far from the microwire ends. Some modification of the theoretical model of a single domain wall trapped in a potential well will be needed for an adequate description of the depinning processes.

2020-08-07
Zhu, Tianqing, Yu, Philip S..  2019.  Applying Differential Privacy Mechanism in Artificial Intelligence. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1601—1609.
Artificial Intelligence (AI) has attracted a large amount of attention in recent years. However, several new problems, such as privacy violations, security issues, or effectiveness, have been emerging. Differential privacy has several attractive properties that make it quite valuable for AI, such as privacy preservation, security, randomization, composition, and stability. Therefore, this paper presents differential privacy mechanisms for multi-agent systems, reinforcement learning, and knowledge transfer based on those properties, which proves that current AI can benefit from differential privacy mechanisms. In addition, the previous usage of differential privacy mechanisms in private machine learning, distributed machine learning, and fairness in models is discussed, bringing several possible avenues to use differential privacy mechanisms in AI. The purpose of this paper is to deliver the initial idea of how to integrate AI with differential privacy mechanisms and to explore more possibilities to improve AIs performance.
2020-02-18
Liu, Ying, He, Qiang, Zheng, Dequan, Zhang, Mingwei, Chen, Feifei, Zhang, Bin.  2019.  Data Caching Optimization in the Edge Computing Environment. 2019 IEEE International Conference on Web Services (ICWS). :99–106.

With the rapid increase in the use of mobile devices in people's daily lives, mobile data traffic is exploding in recent years. In the edge computing environment where edge servers are deployed around mobile users, caching popular data on edge servers can ensure mobile users' fast access to those data and reduce the data traffic between mobile users and the centralized cloud. Existing studies consider the data cache problem with a focus on the reduction of network delay and the improvement of mobile devices' energy efficiency. In this paper, we attack the data caching problem in the edge computing environment from the service providers' perspective, who would like to maximize their venues of caching their data. This problem is complicated because data caching produces benefits at a cost and there usually is a trade-off in-between. In this paper, we formulate the data caching problem as an integer programming problem, and maximizes the revenue of the service provider while satisfying a constraint for data access latency. Extensive experiments are conducted on a real-world dataset that contains the locations of edge servers and mobile users, and the results reveal that our approach significantly outperform the baseline approaches.

2020-03-09
Song, Zekun, Wang, Yichen, Zong, Pengyang, Ren, Zhiwei, Qi, Di.  2019.  An Empirical Study of Comparison of Code Metric Aggregation Methods–on Embedded Software. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :114–119.

How to evaluate software reliability based on historical data of embedded software projects is one of the problems we have to face in practical engineering. Therefore, we establish a software reliability evaluation model based on code metrics. This evaluation technique requires the aggregation of software code metrics into project metrics. Statistical value methods, metric distribution methods, and econometric methods are commonly-used aggregation methods. What are the differences between these methods in the software reliability evaluation process, and which methods can improve the accuracy of the reliability assessment model we have established are our concerns. In view of these concerns, we conduct an empirical study on the application of software code metric aggregation methods based on actual projects. We find the distribution of code metrics for the projects under study. Using these distribution laws, we optimize the aggregation method of code metrics and improve the accuracy of the software reliability evaluation model.

2020-02-17
Yang, Chen, Liu, Tingting, Zuo, Lulu, Hao, Zhiyong.  2019.  An Empirical Study on the Data Security and Privacy Awareness to Use Health Care Wearable Devices. 2019 16th International Conference on Service Systems and Service Management (ICSSSM). :1–6.
Recently, several health care wearable devices which can intervene in health and collect personal health data have emerged in the medical market. Although health care wearable devices promote the integration of multi-layer medical resources and bring new ways of health applications for users, it is inevitable that some problems will be brought. This is mainly manifested in the safety protection of medical and health data and the protection of user's privacy. From the users' point of view, the irrational use of medical and health data may bring psychological and physical negative effects to users. From the government's perspective, it may be sold by private businesses in the international arena and threaten national security. The most direct precaution against the problem is users' initiative. For better understanding, a research model is designed by the following five aspects: Security knowledge (SK), Security attitude (SAT), Security practice (SP), Security awareness (SAW) and Security conduct (SC). To verify the model, structural equation analysis which is an empirical approach was applied to examine the validity and all the results showed that SK, SAT, SP, SAW and SC are important factors affecting users' data security and privacy protection awareness.
2020-06-12
Li, Wenyue, Yin, Jihao, Han, Bingnan, Zhu, Hongmei.  2019.  Generative Adversarial Network with Folded Spectrum for Hyperspectral Image Classification. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :883—886.

Hyperspectral image (HSIs) with abundant spectral information but limited labeled dataset endows the rationality and necessity of semi-supervised spectral-based classification methods. Where, the utilizing approach of spectral information is significant to classification accuracy. In this paper, we propose a novel semi-supervised method based on generative adversarial network (GAN) with folded spectrum (FS-GAN). Specifically, the original spectral vector is folded to 2D square spectrum as input of GAN, which can generate spectral texture and provide larger receptive field over both adjacent and non-adjacent spectral bands for deep feature extraction. The generated fake folded spectrum, the labeled and unlabeled real folded spectrum are then fed to the discriminator for semi-supervised learning. A feature matching strategy is applied to prevent model collapse. Extensive experimental comparisons demonstrate the effectiveness of the proposed method.