Biblio

Filters: Author is Zonouz, Saman  [Clear All Filters]
2022-04-20
Venkataramanan, Venkatesh, Srivastava, Anurag K., Hahn, Adam, Zonouz, Saman.  2019.  Measuring and Enhancing Microgrid Resiliency Against Cyber Threats. IEEE Transactions on Industry Applications. 55:6303—6312.
Recent cyber attacks on the power grid have been of increasing complexity and sophistication. In order to understand the impact of cyber-attacks on the power system resiliency, it is important to consider an holistic cyber-physical system specially with increasing industrial automation. In this study, device-level resilience properties of the various controllers and their impact on the microgrid resiliency is studied. In addition, a cyber-physical resiliency metric considering vulnerabilities, system model, and device-level properties is proposed. Resiliency is defined as the system ability to provide energy to critical loads even in extreme contingencies and depends on system ability to withstand, predict, and recover. A use case is presented inspired by the recent Ukraine cyber-attack. A use case has been presented to demonstrate application of the developed cyber-physical resiliency metric to enhance situational awareness of the operator, and enable better proactive or remedial control actions to improve resiliency.
2020-03-02
Sahu, Abhijeet, Huang, Hao, Davis, Katherine, Zonouz, Saman.  2019.  SCORE: A Security-Oriented Cyber-Physical Optimal Response Engine. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–6.

Automatic optimal response systems are essential for preserving power system resilience and ensuring faster recovery from emergency under cyber compromise. Numerous research works have developed such response engine for cyber and physical system recovery separately. In this paper, we propose a novel cyber-physical decision support system, SCORE, that computes optimal actions considering pure and hybrid cyber-physical states, using Markov Decision Process (MDP). Such an automatic decision making engine can assist power system operators and network administrators to make a faster response to prevent cascading failures and attack escalation respectively. The hybrid nature of the engine makes the reward and state transition model of the MDP unique. Value iteration and policy iteration techniques are used to compute the optimal actions. Tests are performed on three and five substation power systems to recover from attacks that compromise relays to cause transmission line overflow. The paper also analyses the impact of reward and state transition model on computation. Corresponding results verify the efficacy of the proposed engine.

2020-08-24
Huang, Hao, Kazerooni, Maryam, Hossain-McKenzie, Shamina, Etigowni, Sriharsha, Zonouz, Saman, Davis, Katherine.  2019.  Fast Generation Redispatch Techniques for Automated Remedial Action Schemes. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). :1–8.
To ensure power system operational security, it not only requires security incident detection, but also automated intrusion response and recovery mechanisms to tolerate failures and maintain the system's functionalities. In this paper, we present a design procedure for remedial action schemes (RAS) that improves the power systems resiliency against accidental failures or malicious endeavors such as cyber attacks. A resilience-oriented optimal power flow is proposed, which optimizes the system security instead of the generation cost. To improve its speed for online application, a fast greedy algorithm is presented to narrow the search space. The proposed techniques are computationally efficient and are suitable for online RAS applications in large-scale power systems. To demonstrate the effectiveness of the proposed methods, there are two case studies with IEEE 24-bus and IEEE 118-bus systems.
2020-10-26
Sun, Pengfei, Garcia, Luis, Zonouz, Saman.  2019.  Tell Me More Than Just Assembly! Reversing Cyber-Physical Execution Semantics of Embedded IoT Controller Software Binaries. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :349–361.
The safety of critical cyber-physical IoT devices hinges on the security of their embedded software that implements control algorithms for monitoring and control of the associated physical processes, e.g., robotics and drones. Reverse engineering of the corresponding embedded controller software binaries enables their security analysis by extracting high-level, domain-specific, and cyber-physical execution semantic information from executables. We present MISMO, a domain-specific reverse engineering framework for embedded binary code in emerging cyber-physical IoT control application domains. The reverse engineering outcomes can be used for firmware vulnerability assessment, memory forensics analysis, targeted memory data attacks, or binary patching for dynamic selective memory protection (e.g., important control algorithm parameters). MISMO performs semantic-matching at an algorithmic level that can help with the understanding of any possible cyber-physical security flaws. MISMO compares low-level binary symbolic values and high-level algorithmic expressions to extract domain-specific semantic information for the binary's code and data. MISMO enables a finer-grained understanding of the controller by identifying the specific control and state estimation algorithms used. We evaluated MISMO on 2,263 popular firmware binaries by 30 commercial vendors from 6 application domains including drones, self-driving cars, smart homes, robotics, 3D printers, and the Linux kernel controllers. The results show that MISMO can accurately extract the algorithm-level semantics of the embedded binary code and data regions. We discovered a zero-day vulnerability in the Linux kernel controllers versions 3.13 and above.
2018-02-06
Han, Yi, Etigowni, Sriharsha, Liu, Hua, Zonouz, Saman, Petropulu, Athina.  2017.  Watch Me, but Don'T Touch Me! Contactless Control Flow Monitoring via Electromagnetic Emanations. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1095–1108.

Trustworthy operation of industrial control systems depends on secure and real-time code execution on the embedded programmable logic controllers (PLCs). The controllers monitor and control the critical infrastructures, such as electric power grids and healthcare platforms, and continuously report back the system status to human operators. We present Zeus, a contactless embedded controller security monitor to ensure its execution control flow integrity. Zeus leverages the electromagnetic emission by the PLC circuitry during the execution of the controller programs. Zeus's contactless execution tracking enables non-intrusive monitoring of security-critical controllers with tight real-time constraints. Those devices often cannot tolerate the cost and performance overhead that comes with additional traditional hardware or software monitoring modules. Furthermore, Zeus provides an air-gap between the monitor (trusted computing base) and the target (potentially compromised) PLC. This eliminates the possibility of the monitor infection by the same attack vectors. Zeus monitors for control flow integrity of the PLC program execution. Zeus monitors the communications between the human machine interface and the PLC, and captures the control logic binary uploads to the PLC. Zeus exercises its feasible execution paths, and fingerprints their emissions using an external electromagnetic sensor. Zeus trains a neural network for legitimate PLC executions, and uses it at runtime to identify the control flow based on PLC's electromagnetic emissions. We implemented Zeus on a commercial Allen Bradley PLC, which is widely used in industry, and evaluated it on real-world control program executions. Zeus was able to distinguish between different legitimate and malicious executions with 98.9% accuracy and with zero overhead on PLC execution by design.

2017-05-30
Etigowni, Sriharsha, Tian, Dave(Jing), Hernandez, Grant, Zonouz, Saman, Butler, Kevin.  2016.  CPAC: Securing Critical Infrastructure with Cyber-physical Access Control. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :139–152.

Critical infrastructure such as the power grid has become increasingly complex. The addition of computing elements to traditional physical components increases complexity and hampers insight into how elements in the system interact with each other. The result is an infrastructure where operational mistakes, some of which cannot be distinguished from attacks, are more difficult to prevent and have greater potential impact, such as leaking sensitive information to the operator or attacker. In this paper, we present CPAC, a cyber-physical access control solution to manage complexity and mitigate threats in cyber-physical environments, with a focus on the electrical smart grid. CPAC uses information flow analysis based on mathematical models of the physical grid to generate policies enforced through verifiable logic. At the device side, CPAC combines symbolic execution with lightweight dynamic execution monitoring to allow non-intrusive taint analysis on programmable logic controllers in realtime. These components work together to provide a realtime view of all system elements, and allow for more robust and finer-grained protections than any previous solution to securing the grid. We implement a prototype of CPAC using Bachmann PLCs and evaluate several real-world incidents that demonstrate its scalability and effectiveness. The policy checking for a nation-wide grid is less than 150 ms, faster than existing solutions. We additionally show that CPAC can analyze potential component failures for arbitrary component failures, far beyond the capabilities of currently deployed systems. CPAC thus provides a solution to secure the modern smart grid from operator mistakes or insider attacks, maintain operational privacy, and support N - x contingencies.

Sun, Pengfei, Han, Rui, Zhang, Mingbo, Zonouz, Saman.  2016.  Trace-free Memory Data Structure Forensics via Past Inference and Future Speculations. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :570–582.

A yet-to-be-solved but very vital problem in forensics analysis is accurate memory dump data type reverse engineering where the target process is not a priori specified and could be any of the running processes within the system. We present ReViver, a lightweight system-wide solution that extracts data type information from the memory dump without its past execution traces. ReViver constructs the dump's accurate data structure layout through collection of statistical information about possible past traces, forensics inspection of the present memory dump, and speculative investigation of potential future executions of the suspended process. First, ReViver analyzes a heavily instrumented set of execution paths of the same executable that end in the same state of the memory dump (the eip and call stack), and collects statistical information the potential data structure instances on the captured dump. Second, ReViver uses the statistical information and performs a word-byword data type forensics inspection of the captured memory dump. Finally, ReViver revives the dump's execution and explores its potential future execution paths symbolically. ReViver traces the executions including library/system calls for their known argument/return data types, and performs backward taint analysis to mark the dump bytes with relevant data type information. ReViver's experimental results on real-world applications are very promising (98.1%), and show that ReViver improves the accuracy of the past trace-free memory forensics solutions significantly while maintaining a negligible runtime performance overhead (1.8%).