Biblio
Software verification has been well applied in safety critical areas and has shown the ability to provide better quality assurance for modern software. However, as lines of code and complexity of software systems increase, the scalability of verification becomes a challenge. In this paper, we present an automatic software verification framework TSV to address the scalability issues: (i) the extended structural abstraction and property-guided program slicing to solve large-scale program verification problem, saving time and memory without losing accuracy; (ii) automatically select different verification methods according to the program and property context to improve the verification efficiency. For evaluation, we compare TSV's different configurations with existing C program verifiers based on open benchmarks. We found that TSV with auto-selection performs better than with bounded model checking only or with extended structural abstraction only. Compared to existing tools such as CMBC and CPAChecker, it acquires 10%-20% improvement of accuracy and 50%-90% improvement of memory consumption.
Assertions are helpful in program analysis, such as software testing and verification. The most challenging part of automatically recommending assertions is to design the assertion patterns and to insert assertions in proper locations. In this paper, we develop Weak-Assert, a weakness-oriented assertion recommendation toolkit for program analysis of C code. A weakness-oriented assertion is an assertion which can help to find potential program weaknesses. Weak-Assert uses well-designed patterns to match the abstract syntax trees of source code automatically. It collects significant messages from trees and inserts assertions into proper locations of programs. These assertions can be checked by using program analysis techniques. The experiments are set up on Juliet test suite and several actual projects in Github. Experimental results show that Weak-Assert helps to find 125 program weaknesses in 26 actual projects. These weaknesses are confirmed manually to be triggered by some test cases.
Integer errors in C/C++ are caused by arithmetic operations yielding results which are unrepresentable in certain type. They can lead to serious safety and security issues. Due to the complicated semantics of C/C++ integers, integer errors are widely harbored in real-world programs and it is error-prone to repair them even for experts. An automatic tool is desired to 1) automatically generate fixes which assist developers to correct the buggy code, and 2) provide sufficient hints to help developers review the generated fixes and better understand integer types in C/C++. In this paper, we present a tool IntPTI that implements the desired functionalities for C programs. IntPTI infers appropriate types for variables and expressions to eliminate representation issues, and then utilizes the derived types with fix patterns codified from the successful human-written patches. IntPTI provides a user-friendly web interface which allows users to review and manage the fixes. We evaluate IntPTI on 7 real-world projects and the results show its competitive repair accuracy and its scalability on large code bases. The demo video for IntPTI is available at: https://youtu.be/9Tgd4A\_FgZM.