Biblio

Filters: Author is Craggs, Barnaby  [Clear All Filters]
2022-01-12
Weyns, Danny, Bures, Tomas, Calinescu, Radu, Craggs, Barnaby, Fitzgerald, John, Garlan, David, Nuseibeh, Bashar, Pasquale, Liliana, Rashid, Awais, Ruchkin, Ivan et al..  2021.  Six Software Engineering Principles for Smarter Cyber-Physical Systems. 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C), Proceedings of the Workshop on Self-Improving System Integration.
Cyber-Physical Systems (CPS) integrate computational and physical components. With the digitisation of society and industry and the progressing integration of systems, CPS need to become “smarter” in the sense that they can adapt and learn to handle new and unexpected conditions, and improve over time. Smarter CPS present a combination of challenges that existing engineering methods have difficulties addressing: intertwined digital, physical and social spaces, need for heterogeneous modelling formalisms, demand for context-tied cooperation to achieve system goals, widespread uncertainty and disruptions in changing contexts, inherent human constituents, and continuous encounter with new situations. While approaches have been put forward to deal with some of these challenges, a coherent perspective on engineering smarter CPS is lacking. In this paper, we present six engineering principles for addressing the challenges of smarter CPS. As smarter CPS are software-intensive systems, we approach them from a software engineering perspective with the angle of self-adaptation that offers an effective approach to deal with run-time change. The six principles create an integrated landscape for the engineering and operation of smarter CPS.
2018-01-16
Craggs, Barnaby, Rashid, Awais.  2017.  Smart Cyber-physical Systems: Beyond Usable Security to Security Ergonomics by Design. Proceedings of the 3rd International Workshop on Software Engineering for Smart Cyber-Physical Systems. :22–25.

Securing cyber-physical systems is hard. They are complex infrastructures comprising multiple technological artefacts, designers, operators and users. Existing research has established the security challenges in such systems as well as the role of usable security to support humans in effective security decisions and actions. In this paper we focus on smart cyber-physical systems, such as those based on the Internet of Things (IoT). Such smart systems aim to intelligently automate a variety of functions, with the goal of hiding that complexity from the user. Furthermore, the interactions of the user with such systems are more often implicit than explicit, for instance, a pedestrian with wearables walking through a smart city environment will most likely interact with the smart environment implicitly through a variety of inferred preferences based on previously provided or automatically collected data. The key question that we explore is that of empowering software engineers to pragmatically take into account how users make informed security choices about their data and information in such a pervasive environment. We discuss a range of existing frameworks considering the impact of automation on user behaviours and argue for the need of a shift–-from usability to security ergonomics as a key requirement when designing and implementing security features in smart cyber-physical environments. Of course, the considerations apply more broadly than security but, in this paper, we focus only on security as a key concern.