Biblio
This article presents PrOLoc, a localization system that combines partially homomorphic encryption with a new way of structuring the localization problem to enable emcient and accurate computation of a target's location while preserving the privacy of the observers.
This paper addresses the problem of state estimation of a linear time-invariant system when some of the sensors or/and actuators are under adversarial attack. In our set-up, the adversarial agent attacks a sensor (actuator) by manipulating its measurement (input), and we impose no constraint on how the measurements (inputs) are corrupted. We introduce the notion of ``sparse strong observability'' to characterize systems for which the state estimation is possible, given bounds on the number of attacked sensors and actuators. Furthermore, we develop a secure state estimator based on Satisfiability Modulo Theory (SMT) solvers.