Biblio

Filters: Author is Cho, S.  [Clear All Filters]
2020-12-28
Lee, H., Cho, S., Seong, J., Lee, S., Lee, W..  2020.  De-identification and Privacy Issues on Bigdata Transformation. 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). :514—519.

As the number of data in various industries and government sectors is growing exponentially, the `7V' concept of big data aims to create a new value by indiscriminately collecting and analyzing information from various fields. At the same time as the ecosystem of the ICT industry arrives, big data utilization is treatened by the privacy attacks such as infringement due to the large amount of data. To manage and sustain the controllable privacy level, there need some recommended de-identification techniques. This paper exploits those de-identification processes and three types of commonly used privacy models. Furthermore, this paper presents use cases which can be adopted those kinds of technologies and future development directions.

2019-01-21
Cho, S., Chen, G., Chun, H., Coon, J. P., O'Brien, D..  2018.  Impact of multipath reflections on secrecy in VLC systems with randomly located eavesdroppers. 2018 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Considering reflected light in physical layer security (PLS) is very important because a small portion of reflected light enables an eavesdropper (ED) to acquire legitimate information. Moreover, it would be a practical strategy for an ED to be located at an outer area of the room, where the reflection light is strong, in order to escape the vigilance of a legitimate user. Therefore, in this paper, we investigate the impact of multipath reflections on PLS in visible light communication in the presence of randomly located eavesdroppers. We apply spatial point processes to characterize randomly distributed EDs. The generalized error in signal-to-noise ratio that occurs when reflections are ignored is defined as a function of the distance between the receiver and the wall. We use this error for quantifying the domain of interest that needs to be considered from the secrecy viewpoint. Furthermore, we investigate how the reflection affects the secrecy outage probability (SOP). It is shown that the effect of the reflection on the SOP can be removed by adjusting the light emitting diode configuration. Monte Carlo simulations and numerical results are given to verify our analysis.
Cho, S., Han, I., Jeong, H., Kim, J., Koo, S., Oh, H., Park, M..  2018.  Cyber Kill Chain based Threat Taxonomy and its Application on Cyber Common Operational Picture. 2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

Over a decade, intelligent and persistent forms of cyber threats have been damaging to the organizations' cyber assets and missions. In this paper, we analyze current cyber kill chain models that explain the adversarial behavior to perform advanced persistent threat (APT) attacks, and propose a cyber kill chain model that can be used in view of cyber situation awareness. Based on the proposed cyber kill chain model, we propose a threat taxonomy that classifies attack tactics and techniques for each attack phase using CAPEC, ATT&CK that classify the attack tactics, techniques, and procedures (TTPs) proposed by MITRE. We also implement a cyber common operational picture (CyCOP) to recognize the situation of cyberspace. The threat situation can be represented on the CyCOP by applying cyber kill chain based threat taxonomy.

2018-02-02
Kim, H., Ben-Othman, J., Mokdad, L., Cho, S., Bellavista, P..  2017.  On collision-free reinforced barriers for multi domain IoT with heterogeneous UAVs. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :466–471.

Thanks to advancement of vehicle technologies, Unmanned Aerial Vehicle (UAV) now widely spread over practical services and applications affecting daily life of people positively. Especially, multiple heterogeneous UAVs with different capabilities should be considered since UAVs can play an important role in Internet of Things (IoT) environment in which the heterogeneity and the multi domain of UAVs are indispensable. Also, a concept of barrier-coverage has been proved as a promising one applicable to surveillance and security. In this paper, we present collision-free reinforced barriers by heterogeneous UAVs to support multi domain. Then, we define a problem which is to minimize maximum movement of UAVs on condition that a property of collision-free among UAVs is assured while they travel from current positions to specific locations so as to form reinforced barriers within multi domain. Because the defined problem depends on how to locate UAVs on barriers, we develop a novel approach that provides a collision-free movement as well as a creation of virtual lines in multi domain. Furthermore, we address future research topics which should be handled carefully for the barrier-coverage by heterogeneous UAVs.