Biblio

Filters: Author is Han, Z.  [Clear All Filters]
2021-02-22
Han, Z., Wang, F., Li, Z..  2020.  Research on Nearest Neighbor Data Association Algorithm Based on Target “Dynamic” Monitoring Model. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:665–668.
In order to solve the problem that the Nearest Neighbor Data Association (NNDA) algorithm cannot detect the “dynamic” change of the target, this paper proposes the nearest neighbor data association algorithm based on the Targets “Dynamic” Monitoring Model (TDMM). Firstly, the gate searching and updating of targets are completed based on TDMM, then the NNDA algorithm is utilized to achieve the data association of targets to realize track updating. Finally, the NNDA algorithm based on TDMM is realized by simulation. The experimental results show that the algorithm proposed can achieve “dynamic” monitoring in multi-target data association, and have more obvious advantages than Multiple Hypothesis Tracking (MHT) in timeliness and association performance.
2019-06-24
Wang, J., Zhang, X., Zhang, H., Lin, H., Tode, H., Pan, M., Han, Z..  2018.  Data-Driven Optimization for Utility Providers with Differential Privacy of Users' Energy Profile. 2018 IEEE Global Communications Conference (GLOBECOM). :1–6.

Smart meters migrate conventional electricity grid into digitally enabled Smart Grid (SG), which is more reliable and efficient. Fine-grained energy consumption data collected by smart meters helps utility providers accurately predict users' demands and significantly reduce power generation cost, while it imposes severe privacy risks on consumers and may discourage them from using those “espionage meters". To enjoy the benefits of smart meter measured data without compromising the users' privacy, in this paper, we try to integrate distributed differential privacy (DDP) techniques into data-driven optimization, and propose a novel scheme that not only minimizes the cost for utility providers but also preserves the DDP of users' energy profiles. Briefly, we add differential private noises to the users' energy consumption data before the smart meters send it to the utility provider. Due to the uncertainty of the users' demand distribution, the utility provider aggregates a given set of historical users' differentially private data, estimates the users' demands, and formulates the data- driven cost minimization based on the collected noisy data. We also develop algorithms for feasible solutions, and verify the effectiveness of the proposed scheme through simulations using the simulated energy consumption data generated from the utility company's real data analysis.

2019-08-05
He, X., Zhang, Q., Han, Z..  2018.  The Hamiltonian of Data Center Network BCCC. 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). :147–150.

With the development of cloud computing the topology properties of data center network are important to the computing resources. Recently a data center network structure - BCCC is proposed, which is recursively built structure with many good properties. and expandability. The Hamiltonian and expandability in data center network structure plays an extremely important role in network communication. This paper described the Hamiltonian and expandability of the expandable data center network for BCCC structure, the important role of Hamiltonian and expandability in network traffic.

2018-02-15
Han, Z., Yang, L., Liu, Q..  2017.  A Novel Multifactor Two-Server Authentication Scheme under the Mobile Cloud Computing. 2017 International Conference on Networking and Network Applications (NaNA). :341–346.

Because the authentication method based username-password has the disadvantage of easy disclosure and low reliability, and also the excess password management degrades the user experience tremendously, the user is eager to get rid of the bond of the password in order to seek a new way of authentication. Therefore, the multifactor biometrics-based user authentication wins the favor of people with advantages of simplicity, convenience and high reliability, especially in the mobile payment environment. Unfortunately, in the existing scheme, biometric information is stored on the server side. As thus, once the server is hacked by attackers to cause the leakage of the fingerprint information, it will take a deadly threat to the user privacy. Aim at the security problem due to the fingerprint information in the mobile payment environment, we propose a novel multifactor two-server authentication scheme under mobile computing (MTSAS). In the MTSAS, it divides the authentication method and authentication means, in the meanwhile, the user's biometric characteristics cannot leave the user device. And also, MTSAS chooses the different authentication factors depending on the privacy level of the authentication, and then provides the authentication based on the different security levels. BAN logic's result proves that MTSAS has achieved the purpose of authentication, and meets the security requirements. In comparison with other schemes, the analysis shows that the proposed scheme MTSAS not only has the reasonable computational efficiency, but also keeps the superior communication cost.