Biblio
The rapid growth of power Internet of Things devices has led to traditional data security sharing mechanisms that are no longer suitable for attribute and permission management of massive devices. In response to this problem, this article proposes a blockchain-based data security sharing mechanism for the power Internet of Things, which reduces the risk of data leakage through decentralization in the architecture and promotes the integration of multiple information and methods.
Wireless networking opens up many opportunities to facilitate miniaturized robots in collaborative tasks, while the openness of wireless medium exposes robots to the threats of Sybil attackers, who can break the fundamental trust assumption in robotic collaboration by forging a large number of fictitious robots. Recent advances advocate the adoption of bulky multi-antenna systems to passively obtain fine-grained physical layer signatures, rendering them unaffordable to miniaturized robots. To overcome this conundrum, this paper presents ScatterID, a lightweight system that attaches featherlight and batteryless backscatter tags to single-antenna robots to defend against Sybil attacks. Instead of passively "observing" signatures, ScatterID actively "manipulates" multipath propagation by using backscatter tags to intentionally create rich multipath features obtainable to a single-antenna robot. These features are used to construct a distinct profile to detect the real signal source, even when the attacker is mobile and power-scaling. We implement ScatterID on the iRobot Create platform and evaluate it in typical indoor and outdoor environments. The experimental results show that our system achieves a high AUROC of 0.988 and an overall accuracy of 96.4% for identity verification.
With the development of cloud computing the topology properties of data center network are important to the computing resources. Recently a data center network structure - BCCC is proposed, which is recursively built structure with many good properties. and expandability. The Hamiltonian and expandability in data center network structure plays an extremely important role in network communication. This paper described the Hamiltonian and expandability of the expandable data center network for BCCC structure, the important role of Hamiltonian and expandability in network traffic.
We report a an experimental study of device-independent quantum random number generation based on an detection-loophole free Bell test with entangled photons. After considering statistical fluctuations and applying an 80 Gb × 45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits/s, with a failure probability less than 10-5.
Wearable devices are being more popular in our daily life. Especially, smart wristbands are booming in the market recently, which can be used to monitor health status, track fitness data, or even do medical tests, etc. For this reason, smart wristbands can obtain a lot of personal data. Hence, users and manufacturers should pay more attention to the security aspects of smart wristbands. However, we have found that some Bluetooth Low Energy based smart wristbands have very weak or even no security protection mechanism, therefore, they are vulnerable to replay attacks, man-in-the-middle attacks, brute-force attacks, Denial of Service (DoS) attacks, etc. We have investigated four different popular smart wristbands and a smart watch. Among them, only the smart watch is protected by some security mechanisms while the other four smart wristbands are not protected. In our experiments, we have also figured out all the message formats of the controlling commands of these smart wristbands and developed an Android software application as a testing tool. Powered by the resolved command formats, this tool can directly control these wristbands, and any other wristbands of these four models, without using the official supporting applications.
The inevitable temperature raise leads to the demagnetization of permanent magnet synchronous motor (PMSM), that is undesirable in the application of electrical vehicle. This paper presents a nonlinear demagnetization model taking into account temperature with the Wiener structure and neural network characteristics. The remanence and intrinsic coercivity are chosen as intermediate variables, thus the relationship between motor temperature and maximal permanent magnet flux is described by the proposed neural Wiener model. Simulation and experimental results demonstrate the precision of temperature dependent demagnetization model. This work makes the basis of temperature compensation for the output torque from PMSM.