Biblio

Filters: Author is Conti, F.  [Clear All Filters]
2022-08-26
Zimmer, D., Conti, F., Beg, F., Gomez, M. R., Jennings, C. A., Myers, C. E., Bennett, N..  2021.  Effects of Applied Axial Magnetic Fields on Current Coupling in Maglif Experiments on the Z Machine. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
The Z machine is a pulsed power generator located at Sandia National Laboratories in Albuquerque, New Mexico. It is capable of producing a \textbackslashtextgreater20 MA current pulse that is directed onto an experimental load. While a diverse array of experiments are conducted on the Z machine, including x-ray production and dynamic materials science experiments, the focus of this presentation are the Magnetic Liner Inertial Fusion (MagLIF) experiments. In these experiments, an axial magnetic field is applied to the load region, where a cylindrical, fuel-filled metal liner is imploded. We explore the effects of this field on the ability to efficiently couple the generator current to the load, and the extent to which this field interrupts the magnetic insulation of the inner-most transmission line. We find that at the present-day applied field values, the effects of the applied field on current coupling are negligible. Estimates of the potential impact on current coupling of the larger applied field values planned for future experiments are also given. Shunted current is measured with B-dot probes and flyer velocimetry techniques. Analytical calculations, 2D particle-in-cell simulations, and experimental measurements will be presented.
2018-02-21
Conti, F., Schilling, R., Schiavone, P. D., Pullini, A., Rossi, D., Gürkaynak, F. K., Muehlberghuber, M., Gautschi, M., Loi, I., Haugou, G. et al..  2017.  An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics. IEEE Transactions on Circuits and Systems I: Regular Papers. 64:2481–2494.

Near-sensor data analytics is a promising direction for internet-of-things endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data are stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a system-on-chip (SoC) based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65-nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep convolutional neural network (CNN) consuming 3.16pJ per equivalent reduced instruction set computer operation, local CNN-based face detection with secured remote recognition in 5.74pJ/op, and seizure detection with encrypted data collection from electroencephalogram within 12.7pJ/op.