Biblio

Filters: Author is He, F.  [Clear All Filters]
2019-03-28
He, F., Zhang, Y., Liu, H., Zhou, W..  2018.  SCPN-Based Game Model for Security Situational Awareness in the Intenet of Things. 2018 IEEE Conference on Communications and Network Security (CNS). :1-5.
Internet of Things (IoT) is characterized by various of heterogeneous devices that facing numerous threats, which makes modeling security situation of IoT still a certain challenge. This paper defines a Stochastic Colored Petri Net (SCPN) for IoT-based smart environment and then proposes a Game model for security situational awareness. All possible attack paths are computed by the SCPN, and antagonistic behavior of both attackers and defenders are taken into consideration dynamically according to Game Theory (GT). Experiments on two typical attack scenarios in smart home environment demonstrate the effectiveness of the proposed model. The proposed model can form a macroscopic trend curve of the security situation. Analysis of the results shows the capabilities of the proposed model in finding vulnerable devices and potential attack paths, and even facilitating the choice of defense strategy. To the best of our knowledge, this is the first attempt to use Game Theory in the IoT-based SCPN to establish a security situational awareness model for a complex smart environment.
2019-10-15
Pan, Y., He, F., Yu, H..  2018.  An Adaptive Method to Learn Directive Trust Strength for Trust-Aware Recommender Systems. 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design ((CSCWD)). :10–16.

Trust Relationships have shown great potential to improve recommendation quality, especially for cold start and sparse users. Since each user trust their friends in different degrees, there are numbers of works been proposed to take Trust Strength into account for recommender systems. However, these methods ignore the information of trust directions between users. In this paper, we propose a novel method to adaptively learn directive trust strength to improve trust-aware recommender systems. Advancing previous works, we propose to establish direction of trust strength by modeling the implicit relationships between users with roles of trusters and trustees. Specially, under new trust strength with directions, how to compute the directive trust strength is becoming a new challenge. Therefore, we present a novel method to adaptively learn directive trust strengths in a unified framework by enforcing the trust strength into range of [0, 1] through a mapping function. Our experiments on Epinions and Ciao datasets demonstrate that the proposed algorithm can effectively outperform several state-of-art algorithms on both MAE and RMSE metrics.

2018-02-27
He, F., Rao, N. S. V., Ma, C. Y. T..  2017.  Game-Theoretic Analysis of System of Systems with Inherent Robustness Parameters. 2017 20th International Conference on Information Fusion (Fusion). :1–9.

Large-scale infrastructures are critical to economic and social development, and hence their continued performance and security are of high national importance. Such an infrastructure often is a system of systems, and its functionality critically depends on the inherent robustness of its constituent systems and its defense strategy for countering attacks. Additionally, interdependencies between the systems play another critical role in determining the infrastructure robustness specified by its survival probability. In this paper, we develop game-theoretic models between a defender and an attacker for a generic system of systems using inherent parameters and conditional survival probabilities that characterize the interdependencies. We derive Nash Equilibrium conditions for the cases of interdependent and independent systems of systems under sum-form utility functions. We derive expressions for the infrastructure survival probability that capture its dependence on cost and system parameters, and also on dependencies that are specified by conditional probabilities. We apply the results to cyber-physical systems which show the effects on system survival probability due to defense and attack intensities, inherent robustness, unit cost, target valuation, and interdependencies.