Biblio

Filters: Author is Han, Weili  [Clear All Filters]
2023-03-31
Huang, Dapeng, Chen, Haoran, Wang, Kai, Chen, Chen, Han, Weili.  2022.  A Traceability Method for Bitcoin Transactions Based on Gateway Network Traffic Analysis. 2022 International Conference on Networking and Network Applications (NaNA). :176–183.
Cryptocurrencies like Bitcoin have become a popular weapon for illegal activities. They have the characteristics of decentralization and anonymity, which can effectively avoid the supervision of government departments. How to de-anonymize Bitcoin transactions is a crucial issue for regulatory and judicial investigation departments to supervise and combat crimes involving Bitcoin effectively. This paper aims to de-anonymize Bitcoin transactions and present a Bitcoin transaction traceability method based on Bitcoin network traffic analysis. According to the characteristics of the physical network that the Bitcoin network relies on, the Bitcoin network traffic is obtained at the physical convergence point of the local Bitcoin network. By analyzing the collected network traffic data, we realize the traceability of the input address of Bitcoin transactions and test the scheme in the distributed Bitcoin network environment. The experimental results show that this traceability mechanism is suitable for nodes connected to the Bitcoin network (except for VPN, Tor, etc.), and can obtain 47.5% recall rate and 70.4% precision rate, which are promising in practice.
2018-03-05
Zia, Tanveer, Liu, Peng, Han, Weili.  2017.  Application-Specific Digital Forensics Investigative Model in Internet of Things (IoT). Proceedings of the 12th International Conference on Availability, Reliability and Security. :55:1–55:7.

Besides its enormous benefits to the industry and community the Internet of Things (IoT) has introduced unique security challenges to its enablers and adopters. As the trend in cybersecurity threats continue to grow, it is likely to influence IoT deployments. Therefore it is eminent that besides strengthening the security of IoT systems we develop effective digital forensics techniques that when breaches occur we can track the sources of attacks and bring perpetrators to the due process with reliable digital evidence. The biggest challenge in this regard is the heterogeneous nature of devices in IoT systems and lack of unified standards. In this paper we investigate digital forensics from IoT perspectives. We argue that besides traditional digital forensics practices it is important to have application-specific forensics in place to ensure collection of evidence in context of specific IoT applications. We consider top three IoT applications and introduce a model which deals with not just traditional forensics but is applicable in digital as well as application-specific forensics process. We believe that the proposed model will enable collection, examination, analysis and reporting of forensically sound evidence in an IoT application-specific digital forensics investigation.