Biblio
In this letter, we proposed a novel scheme for the realization of scalable and flexible semi-quantum secret sharing between a boss and multiple dynamic agent groups. In our scheme, the boss Alice can not only distribute her secret messages to multiple users, but also can dynamically adjust the number of users and user groups based on the actual situation. Furthermore, security analysis demonstrates that our protocol is secure against both external attack and participant attack. Compared with previous schemes, our protocol is more flexible and practical. In addition, since our protocol involving only single qubit measurement that greatly weakens the hardware requirements of each user.
Kernel rootkits often hide associated malicious processes by altering reported task struct information to upper layers and applications such as ps and top. Virtualized settings offer a unique opportunity to mitigate this behavior using dynamic virtual machine introspection (VMI). For known kernels, VMI can be deployed to search for kernel objects and identify them by using unique data structure "signatures". In existing work, VMI-detected data structure signatures are based on values and structural features which must be (often exactly) present in memory snapshots taken, for accurate detection. This features a certain brittleness and rootkits can escape detection by simply temporarily "un-tangling" the corresponding structures when not running. Here we introduce a new paradigm, that defeats such behavior by training for and observing signatures of timing access patterns to any and all kernel-mapped data regions, including objects that are not directly linked in the "official" list of tasks. The use of timing information in training detection signatures renders the defenses resistant to attacks that try to evade detection by removing their corresponding malicious processes before scans. KXRay successfully detected processes hidden by four traditional rootkits.
Current Trusted Platform Modules (TPMs) are illsuited for cross-device scenarios in trusted mobile applications because they hinder the seamless sharing of data across multiple devices. This paper presents cTPM, an extension of the TPM's design that adds an additional root key to the TPM and shares that root key with the cloud. As a result, the cloud can create and share TPM-protected keys and data across multiple devices owned by one user. Further, the additional key lets the cTPM allocate cloud-backed remote storage so that each TPM can benefit from a trusted real-time clock and high-performance, non-volatile storage.
This paper shows that cTPM is practical, versatile, and easily applicable to trusted mobile applications. Our simple change to the TPM specification is viable because its fundamental concepts - a primary root key and off-chip, NV storage - are already found in the current specification, TPM 2.0. By avoiding a clean-slate redesign, we sidestep the difficult challenge of re-verifying the security properties of a new TPM design. We demonstrate cTPM's versatility with two case studies: extending Pasture with additional functionality, and reimplementing TrInc without the need for extra hardware.