Biblio

Filters: Author is Bhattacharjee, Shameek  [Clear All Filters]
2023-01-20
Li, Ruixiao, Bhattacharjee, Shameek, Das, Sajal K., Yamana, Hayato.  2022.  Look-Up Table based FHE System for Privacy Preserving Anomaly Detection in Smart Grids. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :108—115.
In advanced metering infrastructure (AMI), the customers' power consumption data is considered private but needs to be revealed to data-driven attack detection frameworks. In this paper, we present a system for privacy-preserving anomaly-based data falsification attack detection over fully homomorphic encrypted (FHE) data, which enables computations required for the attack detection over encrypted individual customer smart meter's data. Specifically, we propose a homomorphic look-up table (LUT) based FHE approach that supports privacy preserving anomaly detection between the utility, customer, and multiple partied providing security services. In the LUTs, the data pairs of input and output values for each function required by the anomaly detection framework are stored to enable arbitrary arithmetic calculations over FHE. Furthermore, we adopt a private information retrieval (PIR) approach with FHE to enable approximate search with LUTs, which reduces the execution time of the attack detection service while protecting private information. Besides, we show that by adjusting the significant digits of inputs and outputs in our LUT, we can control the detection accuracy and execution time of the attack detection, even while using FHE. Our experiments confirmed that our proposed method is able to detect the injection of false power consumption in the range of 11–17 secs of execution time, depending on detection accuracy.
Joshi, Sanskruti, Li, Ruixiao, Bhattacharjee, Shameek, Das, Sajal K., Yamana, Hayato.  2022.  Privacy-Preserving Data Falsification Detection in Smart Grids using Elliptic Curve Cryptography and Homomorphic Encryption. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :229—234.
In an advanced metering infrastructure (AMI), the electric utility collects power consumption data from smart meters to improve energy optimization and provides detailed information on power consumption to electric utility customers. However, AMI is vulnerable to data falsification attacks, which organized adversaries can launch. Such attacks can be detected by analyzing customers' fine-grained power consumption data; however, analyzing customers' private data violates the customers' privacy. Although homomorphic encryption-based schemes have been proposed to tackle the problem, the disadvantage is a long execution time. This paper proposes a new privacy-preserving data falsification detection scheme to shorten the execution time. We adopt elliptic curve cryptography (ECC) based on homomorphic encryption (HE) without revealing customer power consumption data. HE is a form of encryption that permits users to perform computations on the encrypted data without decryption. Through ECC, we can achieve light computation. Our experimental evaluation showed that our proposed scheme successfully achieved 18 times faster than the CKKS scheme, a common HE scheme.
2020-06-01
Talusan, Jose Paolo, Tiausas, Francis, Yasumoto, Keiichi, Wilbur, Michael, Pettet, Geoffrey, Dubey, Abhishek, Bhattacharjee, Shameek.  2019.  Smart Transportation Delay and Resiliency Testbed Based on Information Flow of Things Middleware. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :13–18.
Edge and Fog computing paradigms are used to process big data generated by the increasing number of IoT devices. These paradigms have enabled cities to become smarter in various aspects via real-time data-driven applications. While these have addressed some flaws of cloud computing some challenges remain particularly in terms of privacy and security. We create a testbed based on a distributed processing platform called the Information flow of Things (IFoT) middleware. We briefly describe a decentralized traffic speed query and routing service implemented on this framework testbed. We configure the testbed to test countermeasure systems that aim to address the security challenges faced by prior paradigms. Using this testbed, we investigate a novel decentralized anomaly detection approach for time-sensitive distributed smart transportation systems.
2019-03-18
Bhattacharjee, Shameek, Thakur, Aditya, Das, Sajal K..  2018.  Towards Fast and Semi-supervised Identification of Smart Meters Launching Data Falsification Attacks. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :173–185.

Compromised smart meters sending false power consumption data in Advanced Metering Infrastructure (AMI) may have drastic consequences on the smart grid»s operation. Most existing defense models only deal with electricity theft from individual customers (isolated attacks) using supervised classification techniques that do not offer scalable or real time solutions. Furthermore, the cyber and interconnected nature of AMIs can also be exploited by organized adversaries who have the ability to orchestrate simultaneous data falsification attacks after compromising several meters, and also have more complex goals than just electricity theft. In this paper, we first propose a real time semi-supervised anomaly based consensus correction technique that detects the presence and type of smart meter data falsification, and then performs a consensus correction accordingly. Subsequently, we propose a semi-supervised consensus based trust scoring model, that is able to identify the smart meters injecting false data. The main contribution of the proposed approach is to provide a practical framework for compromised smart meter identification that (i) is not supervised (ii) enables quick identification (iii) scales classification error rates better for larger sized AMIs; (iv) counters threats from both isolated and orchestrated attacks; and (v) simultaneously works for a variety of data falsification types. Extensive experimental validation using two real datasets from USA and Ireland, demonstrates the ability of our proposed method to identify compromised meters in near real time across different datasets.

2018-03-05
Bhattacharjee, Shameek, Thakur, Aditya, Silvestri, Simone, Das, Sajal K..  2017.  Statistical Security Incident Forensics Against Data Falsification in Smart Grid Advanced Metering Infrastructure. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :35–45.

Compromised smart meters reporting false power consumption data in Advanced Metering Infrastructure (AMI) may have drastic consequences on a smart grid's operations. Most existing works only deal with electricity theft from customers. However, several other types of data falsification attacks are possible, when meters are compromised by organized rivals. In this paper, we first propose a taxonomy of possible data falsification strategies such as additive, deductive, camouflage and conflict, in AMI micro-grids. Then, we devise a statistical anomaly detection technique to identify the incidence of proposed attack types, by studying their impact on the observed data. Subsequently, a trust model based on Kullback-Leibler divergence is proposed to identify compromised smart meters for additive and deductive attacks. The resultant detection rates and false alarms are minimized through a robust aggregate measure that is calculated based on the detected attack type and successfully discriminating legitimate changes from malicious ones. For conflict and camouflage attacks, a generalized linear model and Weibull function based kernel trick is used over the trust score to facilitate more accurate classification. Using real data sets collected from AMI, we investigate several trade-offs that occur between attacker's revenue and costs, as well as the margin of false data and fraction of compromised nodes. Experimental results show that our model has a high true positive detection rate, while the average false alarm rate is just 8%, for most practical attack strategies, without depending on the expensive hardware based monitoring.