Biblio
Compromised smart meters sending false power consumption data in Advanced Metering Infrastructure (AMI) may have drastic consequences on the smart grid»s operation. Most existing defense models only deal with electricity theft from individual customers (isolated attacks) using supervised classification techniques that do not offer scalable or real time solutions. Furthermore, the cyber and interconnected nature of AMIs can also be exploited by organized adversaries who have the ability to orchestrate simultaneous data falsification attacks after compromising several meters, and also have more complex goals than just electricity theft. In this paper, we first propose a real time semi-supervised anomaly based consensus correction technique that detects the presence and type of smart meter data falsification, and then performs a consensus correction accordingly. Subsequently, we propose a semi-supervised consensus based trust scoring model, that is able to identify the smart meters injecting false data. The main contribution of the proposed approach is to provide a practical framework for compromised smart meter identification that (i) is not supervised (ii) enables quick identification (iii) scales classification error rates better for larger sized AMIs; (iv) counters threats from both isolated and orchestrated attacks; and (v) simultaneously works for a variety of data falsification types. Extensive experimental validation using two real datasets from USA and Ireland, demonstrates the ability of our proposed method to identify compromised meters in near real time across different datasets.
Compromised smart meters reporting false power consumption data in Advanced Metering Infrastructure (AMI) may have drastic consequences on a smart grid's operations. Most existing works only deal with electricity theft from customers. However, several other types of data falsification attacks are possible, when meters are compromised by organized rivals. In this paper, we first propose a taxonomy of possible data falsification strategies such as additive, deductive, camouflage and conflict, in AMI micro-grids. Then, we devise a statistical anomaly detection technique to identify the incidence of proposed attack types, by studying their impact on the observed data. Subsequently, a trust model based on Kullback-Leibler divergence is proposed to identify compromised smart meters for additive and deductive attacks. The resultant detection rates and false alarms are minimized through a robust aggregate measure that is calculated based on the detected attack type and successfully discriminating legitimate changes from malicious ones. For conflict and camouflage attacks, a generalized linear model and Weibull function based kernel trick is used over the trust score to facilitate more accurate classification. Using real data sets collected from AMI, we investigate several trade-offs that occur between attacker's revenue and costs, as well as the margin of false data and fraction of compromised nodes. Experimental results show that our model has a high true positive detection rate, while the average false alarm rate is just 8%, for most practical attack strategies, without depending on the expensive hardware based monitoring.