Biblio
On ARM processors with TrustZone security extension, asynchronous introspection mechanisms have been developed in the secure world to detect security policy violations in the normal world. These mechanisms provide security protection via passively checking the normal world snapshot. However, since previous secure world checking solutions require to suspend the entire rich OS, asynchronous introspection has not been widely adopted in the real world. Given a multi-core ARM system that can execute the two worlds simultaneously on different cores, secure world introspection can check the rich OS without suspension. However, we identify a new normal-world evasion attack that can defeat the asynchronous introspection by removing the attacking traces in parallel from one core when the security checking is performing on another core. We perform a systematic study on this attack and present its efficiency against existing asynchronous introspection mechanisms. As the countermeasure, we propose a secure and trustworthy asynchronous introspection mechanism called SATIN, which can efficiently detect the evasion attacks by increasing the attackers' evasion time cost and decreasing the defender's execution time under a safe limit. We implement a prototype on an ARM development board and the experimental results show that SATIN can effectively prevent evasion attacks on multi-core systems with a minor system overhead.
With the increasing popularity of augmented reality (AR) services, providing seamless human-computer interactions in the AR setting has received notable attention in the industry. Gesture control devices have recently emerged to be the next great gadgets for AR due to their unique ability to enable computer interaction with day-to-day gestures. While these AR devices are bringing revolutions to our interaction with the cyber world, it is also important to consider potential privacy leakages from these always-on wearable devices. Specifically, the coarse access control on current AR systems could lead to possible abuse of sensor data. Although the always-on gesture sensors are frequently quoted as a privacy concern, there has not been any study on information leakage of these devices. In this article, we present our study on side-channel information leakage of the most popular gesture control device, Myo. Using signals recorded from the electromyography (EMG) sensor and accelerometers on Myo, we can recover sensitive information such as passwords typed on a keyboard and PIN sequence entered through a touchscreen. EMG signal records subtle electric currents of muscle contractions. We design novel algorithms based on dynamic cumulative sum and wavelet transform to determine the exact time of finger movements. Furthermore, we adopt the Hudgins feature set in a support vector machine to classify recorded signal segments into individual fingers or numbers. We also apply coordinate transformation techniques to recover fine-grained spatial information with low-fidelity outputs from the sensor in keystroke recovery. We evaluated the information leakage using data collected from a group of volunteers. Our results show that there is severe privacy leakage from these commodity wearable sensors. Our system recovers complex passwords constructed with lowercase letters, uppercase letters, numbers, and symbols with a mean success rate of 91%.
In Wireless Sensor Networks (WSNs), data aggregation has been used to reduce bandwidth and energy costs during a data collection process. However, data aggregation, while bringing us the benefit of improving bandwidth usage and energy efficiency, also introduces opportunities for security attacks, thus reducing data delivery reliability. There is a trade-off between bandwidth and energy efficiency and achieving data delivery reliability. In this paper, we present a comparative study on the reliability and efficiency characteristics of different data aggregation approaches using both simulation studies and test bed evaluations. We also analyse the factors that contribute to network congestion and affect data delivery reliability. Finally, we investigate an optimal trade-off between reliability and efficiency properties of the different approaches by using an intermediate approach, called Multi-Aggregator based Multi-Cast (MAMC) data aggregation approach. Our evaluation results for MAMC show that it is possible to achieve reliability and efficiency at the same time.
Augmented reality is poised to become a dominant computing paradigm over the next decade. With promises of three-dimensional graphics and interactive interfaces, augmented reality experiences will rival the very best science fiction novels. This breakthrough also brings in unique challenges on how users can authenticate one another to share rich content between augmented reality headsets. Traditional authentication protocols fall short when there is no common central entity or when access to the central authentication server is not available or desirable. Looks Good To Me (LGTM) is an authentication protocol that leverages the unique hardware and context provided with augmented reality headsets to bring innate human trust mechanisms into the digital world to solve authentication in a usable and secure way. LGTM works over point to point wireless communication so users can authenticate one another in a variety of circumstances and is designed with usability at its core, requiring users to perform only two actions: one to initiate and one to confirm. Users intuitively authenticate one another, using seemingly only each other's faces, but under the hood LGTM uses a combination of facial recognition and wireless localization to bootstrap trust from a wireless signal, to a location, to a face, for secure and usable authentication.
Automatic face recognition techniques applied on particular group or mass database introduces error cases. Error prevention is crucial for the court. Reranking of recognition results based on anthropology analysis can significant improve the accuracy of automatic methods. Previous studies focused on manual facial comparison. This paper proposed a weighted facial similarity computing method based on morphological analysis of components characteristics. Search sequence of face recognition reranked according to similarity, while the interference terms can be removed. Within this research project, standardized photographs, surveillance videos, 3D face images, identity card photographs of 241 male subjects from China were acquired. Sequencing results were modified by modeling selected individual features from the DMV altas. The improved method raises the accuracy of face recognition through anthroposophic or morphologic theory.