Biblio
Semi-supervised learning has recently gained increasingly attention because it can combine abundant unlabeled data with carefully labeled data to train deep neural networks. However, common semi-supervised methods deeply rely on the quality of pseudo labels. In this paper, we proposed a new semi-supervised learning method based on Generative Adversarial Network (GAN), by using discriminator to learn the feature of both labeled and unlabeled data, instead of generating pseudo labels that cannot all be correct. Our approach, semi-supervised conditional GAN (SCGAN), builds upon the conditional GAN model, extending it to semi-supervised learning by changing the discriminator's output to a classification output and a real or false output. We evaluate our approach with basic semi-supervised model on MNIST dataset. It shows that our approach achieves the classification accuracy with 84.15%, outperforming the basic semi-supervised model with 72.94%, when labeled data are 1/600 of all data.
The root cause of cross-site scripting(XSS) attack is that the JavaScript engine can't distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers. Moving Target Defense (MTD) is a novel technique that aim to defeat attacks by frequently changing the system configuration so that attackers can't catch the status of the system. This paper describes the design and implement of a XSS defense method based on Moving Target Defense technology. This method adds a random attribute to each unsafe element in Web application to distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers and uses a security check function to verify the random attribute, if there is no random attribute or the random attribute value is not correct in a HTML (Hypertext Markup Language) element, the execution of JavaScript code will be prevented. The experiment results show that the method can effectively prevent XSS attacks and have little impact on the system performance.
It is a research hotspot that using blockchain technology to solve the security problems of the Internet of Things (IoT). Although many related ideas have been proposed, there are very few literatures with theoretical and data support. This paper focuses on the research of model construction and performance evaluation. First, an IoT security model is established based on blockchain and InterPlanetary File System (IPFS). In this model, many security risks of traditional IoT architectures can be avoided, and system performance is significantly improved in distributed large capacity storage, concurrency and query. Secondly, the performance of the proposed model is evaluated through the average latency and throughput, which are meaningful for further research and optimization of this direction. Analysis and test results demonstrate the effectiveness of the blockchain-based security model.
After a program has crashed and terminated abnormally, it typically leaves behind a snapshot of its crashing state in the form of a core dump. While a core dump carries a large amount of information, which has long been used for software debugging, it barely serves as informative debugging aids in locating software faults, particularly memory corruption vulnerabilities. A memory corruption vulnerability is a special type of software faults that an attacker can exploit to manipulate the content at a certain memory. As such, a core dump may contain a certain amount of corrupted data, which increases the difficulty in identifying useful debugging information (e.g. , a crash point and stack traces). Without a proper mechanism to deal with this problem, a core dump can be practically useless for software failure diagnosis. In this work, we develop CREDAL, an automatic tool that employs the source code of a crashing program to enhance core dump analysis and turns a core dump to an informative aid in tracking down memory corruption vulnerabilities. Specifically, CREDAL systematically analyzes a core dump potentially corrupted and identifies the crash point and stack frames. For a core dump carrying corrupted data, it goes beyond the crash point and stack trace. In particular, CREDAL further pinpoints the variables holding corrupted data using the source code of the crashing program along with the stack frames. To assist software developers (or security analysts) in tracking down a memory corruption vulnerability, CREDAL also performs analysis and highlights the code fragments corresponding to data corruption. To demonstrate the utility of CREDAL, we use it to analyze 80 crashes corresponding to 73 memory corruption vulnerabilities archived in Offensive Security Exploit Database. We show that, CREDAL can accurately pinpoint the crash point and (fully or partially) restore a stack trace even though a crashing program stack carries corrupted data. In addition, we demonstrate CREDAL can potentially reduce the manual effort of finding the code fragment that is likely to contain memory corruption vulnerabilities.