Biblio

Filters: Author is Kamhoua, C. A.  [Clear All Filters]
2021-02-08
Haque, M. A., Shetty, S., Kamhoua, C. A., Gold, K..  2020.  Integrating Mission-Centric Impact Assessment to Operational Resiliency in Cyber-Physical Systems. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–7.

Developing mission-centric impact assessment techniques to address cyber resiliency in the cyber-physical systems (CPSs) requires integrating system inter-dependencies to the risk and resilience analysis process. Generally, network administrators utilize attack graphs to estimate possible consequences in a networked environment. Attack graphs lack to incorporate the operations-specific dependencies. Localizing the dependencies among operational missions, tasks, and the hosting devices in a large-scale CPS is also challenging. In this work, we offer a graphical modeling technique to integrate the mission-centric impact assessment of cyberattacks by relating the effect to the operational resiliency by utilizing a combination of the logical attack graph and mission impact propagation graph. We propose formal techniques to compute cyberattacks’ impact on the operational mission and offer an optimization process to minimize the same, having budgetary restrictions. We also relate the effect to the system functional operability. We illustrate our modeling techniques using a SCADA (supervisory control and data acquisition) case study for the cyber-physical power systems. We believe our proposed method would help evaluate and minimize the impact of cyber attacks on CPS’s operational missions and, thus, enhance cyber resiliency.

2019-02-22
Guo, Y., Gong, Y., Njilla, L. L., Kamhoua, C. A..  2018.  A Stochastic Game Approach to Cyber-Physical Security with Applications to Smart Grid. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :33-38.
This paper proposes a game-theoretic approach to analyze the interactions between an attacker and a defender in a cyber-physical system (CPS) and develops effective defense strategies. In a CPS, the attacker launches cyber attacks on a number of nodes in the cyber layer, trying to maximize the potential damage to the underlying physical system while the system operator seeks to defend several nodes in the cyber layer to minimize the physical damage. Given that CPS attacking and defending is often a continual process, a zero-sum Markov game is proposed in this paper to model these interactions subject to underlying uncertainties of real-world events and actions. A novel model is also proposed in this paper to characterize the interdependence between the cyber layer and the physical layer in a CPS and quantify the impact of the cyber attack on the physical damage in the proposed game. To find the Nash equilibrium of the Markov game, we design an efficient algorithm based on value iteration. The proposed general approach is then applied to study the wide-area monitoring and protection issue in smart grid. Extensive simulations are conducted based on real-world data, and results show the effectiveness of the defending strategies derived from the proposed approach.
2020-11-17
Tosh, D. K., Shetty, S., Foytik, P., Njilla, L., Kamhoua, C. A..  2018.  Blockchain-Empowered Secure Internet -of- Battlefield Things (IoBT) Architecture. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :593—598.

Internet of Things (IoT) technology is emerging to advance the modern defense and warfare applications because the battlefield things, such as combat equipment, warfighters, and vehicles, can sense and disseminate information from the battlefield to enable real-time decision making on military operations and enhance autonomy in the battlefield. Since this Internet-of-Battlefield Things (IoBT) environment is highly heterogeneous in terms of devices, network standards, platforms, connectivity, and so on, it introduces trust, security, and privacy challenges when battlefield entities exchange information with each other. To address these issues, we propose a Blockchain-empowered auditable platform for IoBT and describe its architectural components, such as battlefield-sensing layer, network layer, and consensus and service layer, in depth. In addition to the proposed layered architecture, this paper also presents several open research challenges involved in each layer to realize the Blockchain-enabled IoBT platform.

Kamhoua, C. A..  2018.  Game theoretic modeling of cyber deception in the Internet of Battlefield Things. 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :862—862.

Internet of Battlefield Things (IoBT) devices such as actuators, sensors, wearable devises, robots, drones, and autonomous vehicles, facilitate the Intelligence, Surveillance and Reconnaissance (ISR) to Command and Control and battlefield services. IoBT devices have the ability to collect operational field data, to compute on the data, and to upload its information to the network. Securing the IoBT presents additional challenges compared with traditional information technology (IT) systems. First, IoBT devices are mass produced rapidly to be low-cost commodity items without security protection in their original design. Second, IoBT devices are highly dynamic, mobile, and heterogeneous without common standards. Third, it is imperative to understand the natural world, the physical process(es) under IoBT control, and how these real-world processes can be compromised before recommending any relevant security counter measure. Moreover, unprotected IoBT devices can be used as “stepping stones” by attackers to launch more sophisticated attacks such as advanced persistent threats (APTs). As a result of these challenges, IoBT systems are the frequent targets of sophisticated cyber attack that aim to disrupt mission effectiveness.

2018-04-02
Cheng, Q., Kwiat, K., Kamhoua, C. A., Njilla, L..  2017.  Attack Graph Based Network Risk Assessment: Exact Inference vs Region-Based Approximation. 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE). :84–87.

Quantitative risk assessment is a critical first step in risk management and assured design of networked computer systems. It is challenging to evaluate the marginal probabilities of target states/conditions when using a probabilistic attack graph to represent all possible attack paths and the probabilistic cause-consequence relations among nodes. The brute force approach has the exponential complexity and the belief propagation method gives approximation when the corresponding factor graph has cycles. To improve the approximation accuracy, a region-based method is adopted, which clusters some highly dependent nodes into regions and messages are passed among regions. Experiments are conducted to compare the performance of the different methods.

2018-05-24
Tosh, D. K., Shetty, S., Liang, X., Kamhoua, C. A., Kwiat, K. A., Njilla, L..  2017.  Security Implications of Blockchain Cloud with Analysis of Block Withholding Attack. 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :458–467.

The blockchain technology has emerged as an attractive solution to address performance and security issues in distributed systems. Blockchain's public and distributed peer-to-peer ledger capability benefits cloud computing services which require functions such as, assured data provenance, auditing, management of digital assets, and distributed consensus. Blockchain's underlying consensus mechanism allows to build a tamper-proof environment, where transactions on any digital assets are verified by set of authentic participants or miners. With use of strong cryptographic methods, blocks of transactions are chained together to enable immutability on the records. However, achieving consensus demands computational power from the miners in exchange of handsome reward. Therefore, greedy miners always try to exploit the system by augmenting their mining power. In this paper, we first discuss blockchain's capability in providing assured data provenance in cloud and present vulnerabilities in blockchain cloud. We model the block withholding (BWH) attack in a blockchain cloud considering distinct pool reward mechanisms. BWH attack provides rogue miner ample resources in the blockchain cloud for disrupting honest miners' mining efforts, which was verified through simulations.