Biblio
With the integration of computing, communication, and physical processes, the modern power grid is becoming a large and complex cyber physical power system (CPPS). This trend is intended to modernize and improve the efficiency of the power grid, yet it makes the CPPS vulnerable to potential cascading failures caused by cyber-attacks, e.g., the attacks that are originated by the cyber network of CPPS. To prevent these risks, it is essential to analyze how cyber-attacks can be conducted against the CPPS and how they can affect the power systems. In light of that General Packet Radio Service (GPRS) has been widely used in CPPS, this paper provides a case study by examining possible cyber-attacks against the cyber-physical power systems with GPRS-based SCADA system. We analyze the vulnerabilities of GPRS-based SCADA systems and focus on DoS attacks and message spoofing attacks. Furthermore, we show the consequence of these attacks against power systems by a simulation using the IEEE 9-node system, and the results show the validity of cascading failures propagated through the systems under our proposed attacks.
Data assurance and resilience are crucial security issues in cloud-based IoT applications. With the widespread adoption of drones in IoT scenarios such as warfare, agriculture and delivery, effective solutions to protect data integrity and communications between drones and the control system have been in urgent demand to prevent potential vulnerabilities that may cause heavy losses. To secure drone communication during data collection and transmission, as well as preserve the integrity of collected data, we propose a distributed solution by utilizing blockchain technology along with the traditional cloud server. Instead of registering the drone itself to the blockchain, we anchor the hashed data records collected from drones to the blockchain network and generate a blockchain receipt for each data record stored in the cloud, reducing the burden of moving drones with the limit of battery and process capability while gaining enhanced security guarantee of the data. This paper presents the idea of securing drone data collection and communication in combination with a public blockchain for provisioning data integrity and cloud auditing. The evaluation shows that our system is a reliable and distributed system for drone data assurance and resilience with acceptable overhead and scalability for a large number of drones.
The blockchain technology has emerged as an attractive solution to address performance and security issues in distributed systems. Blockchain's public and distributed peer-to-peer ledger capability benefits cloud computing services which require functions such as, assured data provenance, auditing, management of digital assets, and distributed consensus. Blockchain's underlying consensus mechanism allows to build a tamper-proof environment, where transactions on any digital assets are verified by set of authentic participants or miners. With use of strong cryptographic methods, blocks of transactions are chained together to enable immutability on the records. However, achieving consensus demands computational power from the miners in exchange of handsome reward. Therefore, greedy miners always try to exploit the system by augmenting their mining power. In this paper, we first discuss blockchain's capability in providing assured data provenance in cloud and present vulnerabilities in blockchain cloud. We model the block withholding (BWH) attack in a blockchain cloud considering distinct pool reward mechanisms. BWH attack provides rogue miner ample resources in the blockchain cloud for disrupting honest miners' mining efforts, which was verified through simulations.