Biblio

Filters: Author is Dresel, Lukas  [Clear All Filters]
2023-07-11
Gritti, Fabio, Pagani, Fabio, Grishchenko, Ilya, Dresel, Lukas, Redini, Nilo, Kruegel, Christopher, Vigna, Giovanni.  2022.  HEAPSTER: Analyzing the Security of Dynamic Allocators for Monolithic Firmware Images. 2022 IEEE Symposium on Security and Privacy (SP). :1082—1099.
Dynamic memory allocators are critical components of modern systems, and developers strive to find a balance between their performance and their security. Unfortunately, vulnerable allocators are routinely abused as building blocks in complex exploitation chains. Most of the research regarding memory allocators focuses on popular and standardized heap libraries, generally used by high-end devices such as desktop systems and servers. However, dynamic memory allocators are also extensively used in embedded systems but they have not received much scrutiny from the security community.In embedded systems, a raw firmware image is often the only available piece of information, and finding heap vulnerabilities is a manual and tedious process. First of all, recognizing a memory allocator library among thousands of stripped firmware functions can quickly become a daunting task. Moreover, emulating firmware functions to test for heap vulnerabilities comes with its own set of challenges, related, but not limited, to the re-hosting problem.To fill this gap, in this paper we present HEAPSTER, a system that automatically identifies the heap library used by a monolithic firmware image, and tests its security with symbolic execution and bounded model checking. We evaluate HEAPSTER on a dataset of 20 synthetic monolithic firmware images — used as ground truth for our analyses — and also on a dataset of 799 monolithic firmware images collected in the wild and used in real-world devices. Across these datasets, our tool identified 11 different heap management library (HML) families containing a total of 48 different variations. The security testing performed by HEAPSTER found that all the identified variants are vulnerable to at least one critical heap vulnerability. The results presented in this paper show a clear pattern of poor security standards, and raise some concerns over the security of dynamic memory allocators employed by IoT devices.
2018-11-19
Shoshitaishvili, Yan, Weissbacher, Michael, Dresel, Lukas, Salls, Christopher, Wang, Ruoyu, Kruegel, Christopher, Vigna, Giovanni.  2017.  Rise of the HaCRS: Augmenting Autonomous Cyber Reasoning Systems with Human Assistance. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :347–362.

Software permeates every aspect of our world, from our homes to the infrastructure that provides mission-critical services. As the size and complexity of software systems increase, the number and sophistication of software security flaws increase as well. The analysis of these flaws began as a manual approach, but it soon became apparent that a manual approach alone cannot scale, and that tools were necessary to assist human experts in this task, resulting in a number of techniques and approaches that automated certain aspects of the vulnerability analysis process. Recently, DARPA carried out the Cyber Grand Challenge, a competition among autonomous vulnerability analysis systems designed to push the tool-assisted human-centered paradigm into the territory of complete automation, with the hope that, by removing the human factor, the analysis would be able to scale to new heights. However, when the autonomous systems were pitted against human experts it became clear that certain tasks, albeit simple, could not be carried out by an autonomous system, as they require an understanding of the logic of the application under analysis. Based on this observation, we propose a shift in the vulnerability analysis paradigm, from tool-assisted human-centered to human-assisted tool-centered. In this paradigm, the automated system orchestrates the vulnerability analysis process, and leverages humans (with different levels of expertise) to perform well-defined sub-tasks, whose results are integrated in the analysis. As a result, it is possible to scale the analysis to a larger number of programs, and, at the same time, optimize the use of expensive human resources. In this paper, we detail our design for a human-assisted automated vulnerability analysis system, describe its implementation atop an open-sourced autonomous vulnerability analysis system that participated in the Cyber Grand Challenge, and evaluate and discuss the significant improvements that non-expert human assistance can offer to automated analysis approaches.