Biblio

Filters: Author is Zhang, David  [Clear All Filters]
2023-01-13
Xia, Hongyan, Zhang, David, Liu, Wei, Haller, Istvan, Sherwin, Bruce, Chisnall, David.  2022.  A Secret-Free Hypervisor: Rethinking Isolation in the Age of Speculative Vulnerabilities. 2022 IEEE Symposium on Security and Privacy (SP). :370—385.
In recent years, the epidemic of speculative side channels significantly increases the difficulty in enforcing domain isolation boundaries in a virtualized cloud environment. Although mitigations exist, the approach taken by the industry is neither a long-term nor a scalable solution, as we target each vulnerability with specific mitigations that add up to substantial performance penalties. We propose a different approach to secret isolation: guaranteeing that the hypervisor is Secret-Free (SF). A Secret-Free design partitions memory into secrets and non-secrets and reconstructs hypervisor isolation. It enforces that all domains have a minimal and secret-free view of the address space. In contrast to state-of-the-art, a Secret-Free hypervisor does not identify secrets to be hidden, but instead identifies non-secrets that can be shared, and only grants access necessary for the current operation, an allow-list approach. SF designs function with existing hardware and do not exhibit noticeable performance penalties in production workloads versus the unmitigated baseline, and outperform state-of-the-art techniques by allowing speculative execution where secrets are invisible. We implement SF in Xen (a Type-I hypervisor) to demonstrate that the design applies well to a commercial hypervisor. Evaluation shows performance comparable to baseline and up to 37% improvement in certain hypervisor paths compared with Xen default mitigations. Further, we demonstrate Secret-Free is a generic kernel isolation infrastructure for a variety of systems, not limited to Type-I hypervisors. We apply the same model in Hyper-V (Type-I), bhyve (Type-II) and FreeBSD (UNIX kernel) to evaluate its applicability and effectiveness. The successful implementations on these systems prove the generality of SF, and reveal the specific adaptations and optimizations required for each type of kernel.
2018-11-19
Yang, Lingxiao, Liu, Risheng, Zhang, David, Zhang, Lei.  2017.  Deep Location-Specific Tracking. Proceedings of the 25th ACM International Conference on Multimedia. :1309–1317.

Convolutional Neural Network (CNN) based methods have shown significant performance gains in the problem of visual tracking in recent years. Due to many uncertain changes of objects online, such as abrupt motion, background clutter and large deformation, the visual tracking is still a challenging task. We propose a novel algorithm, namely Deep Location-Specific Tracking, which decomposes the tracking problem into a localization task and a classification task, and trains an individual network for each task. The localization network exploits the information in the current frame and provides a specific location to improve the probability of successful tracking, while the classification network finds the target among many examples generated around the target location in the previous frame, as well as the one estimated from the localization network in the current frame. CNN based trackers often have massive number of trainable parameters, and are prone to over-fitting to some particular object states, leading to less precision or tracking drift. We address this problem by learning a classification network based on 1 × 1 convolution and global average pooling. Extensive experimental results on popular benchmark datasets show that the proposed tracker achieves competitive results without using additional tracking videos for fine-tuning. The code is available at https://github.com/ZjjConan/DLST