Biblio

Filters: Author is Zhang, Lei  [Clear All Filters]
2023-09-01
Chen, Guangxuan, Chen, Guangxiao, Wu, Di, Liu, Qiang, Zhang, Lei.  2022.  A Crawler-based Digital Forensics Method Oriented to Illegal Website. 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 5:1883—1887.
There are a large number of illegal websites on the Internet, such as pornographic websites, gambling websites, online fraud websites, online pyramid selling websites, etc. This paper studies the use of crawler technology for digital forensics on illegal websites. First, a crawler based illegal website forensics program is designed and developed, which can detect the peripheral information of illegal websites, such as domain name, IP address, network topology, and crawl key information such as website text, pictures, and scripts. Then, through comprehensive analysis such as word cloud analysis, word frequency analysis and statistics on the obtained data, it can help judge whether a website is illegal.
2023-05-30
Wang, Binbin, Wu, Yi, Guo, Naiwang, Zhang, Lei, Liu, Chang.  2022.  A cross-layer attack path detection method for smart grid dynamics. 2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :142—146.
With the intelligent development of power system, due to the double-layer structure of smart grid and the characteristics of failure propagation across layers, the attack path also changes significantly: from single-layer to multi-layer and from static to dynamic. In response to the shortcomings of the single-layer attack path of traditional attack path identification methods, this paper proposes the idea of cross-layer attack, which integrates the threat propagation mechanism of the information layer and the failure propagation mechanism of the physical layer to establish a forward-backward bi-directional detection model. The model is mainly used to predict possible cross-layer attack paths and evaluate their path generation probabilities to provide theoretical guidance and technical support for defenders. The experimental results show that the method proposed in this paper can well identify the dynamic cross-layer attacks in the smart grid.
2023-06-09
Liu, Luchen, Lin, Xixun, Zhang, Peng, Zhang, Lei, Wang, Bin.  2022.  Learning Common Dependency Structure for Unsupervised Cross-Domain Ner. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8347—8351.
Unsupervised cross-domain NER task aims to solve the issues when data in a new domain are fully-unlabeled. It leverages labeled data from source domain to predict entities in unlabeled target domain. Since training models on large domain corpus is time-consuming, in this paper, we consider an alternative way by introducing syntactic dependency structure. Such information is more accessible and can be shared between sentences from different domains. We propose a novel framework with dependency-aware GNN (DGNN) to learn these common structures from source domain and adapt them to target domain, alleviating the data scarcity issue and bridging the domain gap. Experimental results show that our method outperforms state-of-the-art methods.
2023-04-14
Zhang, Lei, Zhou, Jian, Ma, Yizhong, Shen, Lijuan.  2022.  Sequential Topology Attack of Supply Chain Networks Based on Reinforcement Learning. 2022 International Conference on Cyber-Physical Social Intelligence (ICCSI). :744–749.
The robustness of supply chain networks (SCNs) against sequential topology attacks is significant for maintaining firm relationships and activities. Although SCNs have experienced many emergencies demonstrating that mixed failures exacerbate the impact of cascading failures, existing studies of sequential attacks rarely consider the influence of mixed failure modes on cascading failures. In this paper, a reinforcement learning (RL)-based sequential attack strategy is applied to SCNs with cascading failures that consider mixed failure modes. To solve the large state space search problem in SCNs, a deep Q-network (DQN) optimization framework combining deep neural networks (DNNs) and RL is proposed to extract features of state space. Then, it is compared with the traditional random-based, degree-based, and load-based sequential attack strategies. Simulation results on Barabasi-Albert (BA), Erdos-Renyi (ER), and Watts-Strogatz (WS) networks show that the proposed RL-based sequential attack strategy outperforms three existing sequential attack strategies. It can trigger cascading failures with greater influence. This work provides insights for effectively reducing failure propagation and improving the robustness of SCNs.
2023-03-31
Zhang, Jie, Li, Bo, Xu, Jianghe, Wu, Shuang, Ding, Shouhong, Zhang, Lei, Wu, Chao.  2022.  Towards Efficient Data Free Blackbox Adversarial Attack. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :15094–15104.
Classic black-box adversarial attacks can take advantage of transferable adversarial examples generated by a similar substitute model to successfully fool the target model. However, these substitute models need to be trained by target models' training data, which is hard to acquire due to privacy or transmission reasons. Recognizing the limited availability of real data for adversarial queries, recent works proposed to train substitute models in a data-free black-box scenario. However, their generative adversarial networks (GANs) based framework suffers from the convergence failure and the model collapse, resulting in low efficiency. In this paper, by rethinking the collaborative relationship between the generator and the substitute model, we design a novel black-box attack framework. The proposed method can efficiently imitate the target model through a small number of queries and achieve high attack success rate. The comprehensive experiments over six datasets demonstrate the effectiveness of our method against the state-of-the-art attacks. Especially, we conduct both label-only and probability-only attacks on the Microsoft Azure online model, and achieve a 100% attack success rate with only 0.46% query budget of the SOTA method [49].
2022-12-09
Han, Wendie, Zhang, Rui, Zhang, Lei, Wang, Lulu.  2022.  A Secure and Receiver-Unrestricted Group Key Management Scheme for Mobile Ad-hoc Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :986—991.

Mobile Ad-hoc Networks (MANETs) have attracted lots of concerns with its widespread use. In MANETs, wireless nodes usually self-organize into groups to complete collaborative tasks and communicate with one another via public channels which are vulnerable to attacks. Group key management is generally employed to guarantee secure group communication in MANETs. However, most existing group key management schemes for MANETs still suffer from some issues, e.g., receiver restriction, relying on a trusted dealer and heavy certificates overheads. To address these issues, we propose a group key management scheme for MANETs based on an identity-based authenticated dynamic contributory broadcast encryption (IBADConBE) protocol which builds on an earlier work. Our scheme abandons the certificate management and does not need a trusted dealer to distribute a secret key to each node. A set of wireless nodes are allowed to negotiate the secret keys in one round while forming a group. Besides, our scheme is receiver-unrestricted which means any sender can flexibly opt for any favorable nodes of a group as the receivers. Further, our scheme satisfies the authentication, confidentiality of messages, known-security, forward security and backward security concurrently. Performance evaluation shows our scheme is efficient.

2022-04-26
Feng, Ling, Feng, Bin, Zhang, Lei, Duan, XiQiang.  2021.  Design of an Authorized Digital Signature Scheme for Sensor Network Communication in Secure Internet of Things. 2021 3rd International Symposium on Robotics Intelligent Manufacturing Technology (ISRIMT). :496–500.

With the rapid development of Internet of Things technology and sensor networks, large amount of data is facing security challenges in the transmission process. In the process of data transmission, the standardization and authentication of data sources are very important. A digital signature scheme based on bilinear pairing problem is designed. In this scheme, by signing the authorization mechanism, the management node can control the signature process and distribute data. The use of private key segmentation mechanism can reduce the performance requirements of sensor nodes. The reasonable combination of timestamp mechanism can ensure the time limit of signature and be verified after the data is sent. It is hoped that the implementation of this scheme can improve the security of data transmission on the Internet of things environment.

2020-08-13
Yu, Lili, Su, Xiaoguang, Zhang, Lei.  2019.  Collaboration-Based Location Privacy Protection Method. 2019 IEEE 2nd International Conference on Electronics Technology (ICET). :639—643.
In the privacy protection method based on user collaboration, all participants and collaborators must share the maximum anonymity value set in the anonymous group. No user can get better quality of service by reducing the anonymity requirement. In this paper, a privacy protection algorithm random-QBE, which divides query information into blocks and exchanges randomly, is proposed. Through this method, personalized anonymity, query diversity and location anonymity in user cooperative privacy protection can be realized. And through multi-hop communication between collaborative users, this method can also satisfy the randomness of anonymous location, so that the location of the applicant is no longer located in the center of the anonymous group, which further increases the ability of privacy protection. Experiments show that the algorithm can complete the processing in a relatively short time and is suitable for deployment in real environment to protect user's location privacy.
2020-04-17
Chen, Guangxuan, Wu, Di, Chen, Guangxiao, Qin, Panke, Zhang, Lei, Liu, Qiang.  2019.  Research on Digital Forensics Framework for Malicious Behavior in Cloud. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:1375—1379.

The difficult of detecting, response, tracing the malicious behavior in cloud has brought great challenges to the law enforcement in combating cybercrimes. This paper presents a malicious behavior oriented framework of detection, emergency response, traceability, and digital forensics in cloud environment. A cloud-based malicious behavior detection mechanism based on SDN is constructed, which implements full-traffic flow detection technology and malicious virtual machine detection based on memory analysis. The emergency response and traceability module can clarify the types of the malicious behavior and the impacts of the events, and locate the source of the event. The key nodes and paths of the infection topology or propagation path of the malicious behavior will be located security measure will be dispatched timely. The proposed IaaS service based forensics module realized the virtualization facility memory evidence extraction and analysis techniques, which can solve volatile data loss problems that often happened in traditional forensic methods.

2020-06-12
Jiang, Ruituo, Li, Xu, Gao, Ang, Li, Lixin, Meng, Hongying, Yue, Shigang, Zhang, Lei.  2019.  Learning Spectral and Spatial Features Based on Generative Adversarial Network for Hyperspectral Image Super-Resolution. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :3161—3164.

Super-resolution (SR) of hyperspectral images (HSIs) aims to enhance the spatial/spectral resolution of hyperspectral imagery and the super-resolved results will benefit many remote sensing applications. A generative adversarial network for HSIs super-resolution (HSRGAN) is proposed in this paper. Specifically, HSRGAN constructs spectral and spatial blocks with residual network in generator to effectively learn spectral and spatial features from HSIs. Furthermore, a new loss function which combines the pixel-wise loss and adversarial loss together is designed to guide the generator to recover images approximating the original HSIs and with finer texture details. Quantitative and qualitative results demonstrate that the proposed HSRGAN is superior to the state of the art methods like SRCNN and SRGAN for HSIs spatial SR.

2020-04-24
Zhang, Lei, Zhang, Jianqing, Chen, Yong, Liao, Shaowen.  2018.  Research on the Simulation Algorithm of Object-Oriented Language. 2018 3rd International Conference on Smart City and Systems Engineering (ICSCSE). :902—904.

Security model is an important subject in the field of low energy independence complexity theory. It takes security strategy as the core, changes the system from static protection to dynamic protection, and provides the basis for the rapid response of the system. A large number of empirical studies have been conducted to verify the cache consistency. The development of object oriented language is pure object oriented language, and the other is mixed object oriented language, that is, adding class, inheritance and other elements in process language and other languages. This paper studies a new object-oriented language application, namely GUT for a write-back cache, which is based on the study of simulation algorithm to solve all these challenges in the field of low energy independence complexity theory.

2018-11-19
Hong, Geng, Yang, Zhemin, Yang, Sen, Zhang, Lei, Nan, Yuhong, Zhang, Zhibo, Yang, Min, Zhang, Yuan, Qian, Zhiyun, Duan, Haixin.  2018.  How You Get Shot in the Back: A Systematical Study About Cryptojacking in the Real World. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1701–1713.

As a new mechanism to monetize web content, cryptocurrency mining is becoming increasingly popular. The idea is simple: a webpage delivers extra workload (JavaScript) that consumes computational resources on the client machine to solve cryptographic puzzles, typically without notifying users or having explicit user consent. This new mechanism, often heavily abused and thus considered a threat termed "cryptojacking", is estimated to affect over 10 million web users every month; however, only a few anecdotal reports exist so far and little is known about its severeness, infrastructure, and technical characteristics behind the scene. This is likely due to the lack of effective approaches to detect cryptojacking at a large-scale (e.g., VirusTotal). In this paper, we take a first step towards an in-depth study over cryptojacking. By leveraging a set of inherent characteristics of cryptojacking scripts, we build CMTracker, a behavior-based detector with two runtime profilers for automatically tracking Cryptocurrency Mining scripts and their related domains. Surprisingly, our approach successfully discovered 2,770 unique cryptojacking samples from 853,936 popular web pages, including 868 among top 100K in Alexa list. Leveraging these samples, we gain a more comprehensive picture of the cryptojacking attacks, including their impact, distribution mechanisms, obfuscation, and attempts to evade detection. For instance, a diverse set of organizations benefit from cryptojacking based on the unique wallet ids. In addition, to stay under the radar, they frequently update their attack domains (fastflux) on the order of days. Many attackers also apply evasion techniques, including limiting the CPU usage, obfuscating the code, etc.

Yang, Lingxiao, Liu, Risheng, Zhang, David, Zhang, Lei.  2017.  Deep Location-Specific Tracking. Proceedings of the 25th ACM International Conference on Multimedia. :1309–1317.

Convolutional Neural Network (CNN) based methods have shown significant performance gains in the problem of visual tracking in recent years. Due to many uncertain changes of objects online, such as abrupt motion, background clutter and large deformation, the visual tracking is still a challenging task. We propose a novel algorithm, namely Deep Location-Specific Tracking, which decomposes the tracking problem into a localization task and a classification task, and trains an individual network for each task. The localization network exploits the information in the current frame and provides a specific location to improve the probability of successful tracking, while the classification network finds the target among many examples generated around the target location in the previous frame, as well as the one estimated from the localization network in the current frame. CNN based trackers often have massive number of trainable parameters, and are prone to over-fitting to some particular object states, leading to less precision or tracking drift. We address this problem by learning a classification network based on 1 × 1 convolution and global average pooling. Extensive experimental results on popular benchmark datasets show that the proposed tracker achieves competitive results without using additional tracking videos for fine-tuning. The code is available at https://github.com/ZjjConan/DLST