Biblio

Filters: Author is Zhang, Chi  [Clear All Filters]
2023-06-09
Sun, Zeyu, Zhang, Chi.  2022.  Research on Relation Extraction of Fusion Entity Enhancement and Shortest Dependency Path based on BERT. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:766—770.
Deep learning models rely on single word features and location features of text to achieve good results in text relation extraction tasks. However, previous studies have failed to make full use of semantic information contained in sentence dependency syntax trees, and data sparseness and noise propagation still affect classification models. The BERT(Bidirectional Encoder Representations from Transformers) pretrained language model provides a better representation of natural language processing tasks. And entity enhancement methods have been proved to be effective in relation extraction tasks. Therefore, this paper proposes a combination of the shortest dependency path and entity-enhanced BERT pre-training language model for model construction to reduce the impact of noise terms on the classification model and obtain more semantically expressive feature representation. The algorithm is tested on SemEval-2010 Task 8 English relation extraction dataset, and the F1 value of the final experiment can reach 0. 881.
2022-07-29
Lv, Tianxiang, Bao, Qihao, Chen, Haibo, Zhang, Chi.  2021.  A Testing Method for Object-oriented Program based on Adaptive Random Testing with Variable Probability. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1155–1156.
Object-oriented program (OOP) is very popular in these years for its advantages, but the testing method for OOP is still not mature enough. To deal with the problem that it is impossible to generate the probability density function by simply numeralizing a point in the test case caused by the complex structure of the object-oriented test case, we propose the Adaptive Random Testing through Test Profile for Object-Oriented software (ARTTP-OO). It generates a test case at the edge of the input field and calculates the distance between object-oriented test cases using Object and Method Invocation Sequence Similarity (OMISS) metric formula. And the probability density function is generated by the distance to select the test cases, thereby realizing the application of ARTTP algorithm in OOP. The experimental results indicate the proposed ARTTP-OO consumes less time cost without reducing the detection effectiveness.
2021-05-18
Zhang, Chi, Chen, Jinfu, Cai, Saihua, Liu, Bo, Wu, Yiming, Geng, Ye.  2020.  iTES: Integrated Testing and Evaluation System for Software Vulnerability Detection Methods. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1455–1460.
To find software vulnerabilities using software vulnerability detection technology is an important way to ensure the system security. Existing software vulnerability detection methods have some limitations as they can only play a certain role in some specific situations. To accurately analyze and evaluate the existing vulnerability detection methods, an integrated testing and evaluation system (iTES) is designed and implemented in this paper. The main functions of the iTES are:(1) Vulnerability cases with source codes covering common vulnerability types are collected automatically to form a vulnerability cases library; (2) Fourteen methods including static and dynamic vulnerability detection are evaluated in iTES, involving the Windows and Linux platforms; (3) Furthermore, a set of evaluation metrics is designed, including accuracy, false positive rate, utilization efficiency, time cost and resource cost. The final evaluation and test results of iTES have a good guiding significance for the selection of appropriate software vulnerability detection methods or tools according to the actual situation in practice.
2021-05-13
Ahmed, Farooq, Li, Xudong, Niu, Yukun, Zhang, Chi, Wei, Lingbo, Gu, Chengjie.  2020.  UniRoam: An Anonymous and Accountable Authentication Scheme for Cross-Domain Access. 2020 International Conference on Networking and Network Applications (NaNA). :198—205.
In recent years, cross-domain roaming through Wi-Fi is ubiquitous, and the number of roaming users has increased dramatically. It is essential to authenticate users belonging to different institutes to ensure network privacy and security. Existing systems, such as eduroam, have centralized and hierarchical structure on indorse accounts that create privacy and security issues. We have proposed UniRoam, a blockchain-based cross-domain authentication scheme that provides accountability and anonymity without any trusted authority. Unlike traditional centralized approaches, UniRoam provides access authentication for its servers and users to provide anonymity and accountability without any privacy leakage issues efficiently. By using the sovrin identifier as an anonymous identity, we integrate our system with Hyperledger and Intel SGX to authenticate users that preserves both anonymity and trust when the user connects to the network. Therefore, UniRoam is highly “faulted-tolerant” to deal with different attacks and provides an effective solution that can be deployed easily in different environments.
2020-01-27
Sinclair, Dara, Shahriar, Hossain, Zhang, Chi.  2019.  Security Requirement Prototyping with Hyperledger Composer for Drug Supply Chain: A Blockchain Application. Proceedings of the 3rd International Conference on Cryptography, Security and Privacy. :158–163.

Blockchain may have a potential to prove its value for the new US FDA regulatory requirements defined in the Drug Supply Chain Security Act (DSCSA) as innovative solutions are needed to support the highly complex pharmaceutical industry supply chain as it seeks to comply. In this paper, we examine how blockchain can be applied to meet with the security compliance requirement for the pharmaceutical supply chain. We explore the online playground of Hyperledger Composer, a set of tools for building blockchain business networks, to model the data and access control rules for the drug supply chain. Our experiment shows that this solution can provide a prototyping opportunity for compliance checking with certain limitations.

2021-10-21
Sinclair, Dara, Shahriar, Hossain, Zhang, Chi.  2019.  Security Requirement Prototyping with Hyperledger Composer for Drug Supply Chain: A Blockchain Application. Proceedings of the 3rd International Conference on Cryptography, Security and Privacy. :158–163.
Blockchain may have a potential to prove its value for the new US FDA regulatory requirements defined in the Drug Supply Chain Security Act (DSCSA) as innovative solutions are needed to support the highly complex pharmaceutical industry supply chain as it seeks to comply. In this paper, we examine how blockchain can be applied to meet with the security compliance requirement for the pharmaceutical supply chain. We explore the online playground of Hyperledger Composer, a set of tools for building blockchain business networks, to model the data and access control rules for the drug supply chain. Our experiment shows that this solution can provide a prototyping opportunity for compliance checking with certain limitations.
2018-11-28
Zhang, Chi, Zheng, Jin, Zhang, Yugui, Zhang, Zhi.  2017.  Moving Object Detection Algorithm Based on Pixel Background Sample Sets in Panoramic Scanning Mode. Proceedings of the International Conference on Compute and Data Analysis. :171–175.

In order to overcome the excessive false detection of marginal noise and the object holes of the existing algorithm in outdoor panoramic surveillance, a moving object detection algorithm based on pixel background sample sets in panoramic scanning mode is proposed. In the light of the space distribution characteristics, neighborhood pixels have similar values. Therefore, a background sample set for each pixel is created by random sampling in the first scanning cycle which effectively avoids the false detection of marginal noise and reduces the time cost of background model establishment. The adjacent frame difference detection algorithm in the traditional camera motion mode is prone to object holes. To solve this problem, detection based on background sample sets is presented to obtain complete moving object region. The results indicate that the proposed moving object detection algorithm works more efficiently on reducing marginal noise interference, and obtains complete moving object information compared with the frame difference detection algorithm based on registration results in traditional camera motion mode, thereby meeting the needs of real-time detection as well as improving its accuracy.