Biblio

Filters: Author is Wang, Chao  [Clear All Filters]
2023-08-03
Duan, Xiaowei, Han, Yiliang, Wang, Chao, Ni, Huanhuan.  2022.  Optimization of Encrypted Communication Model Based on Generative Adversarial Network. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :20–24.
With the progress of cryptography computer science, designing cryptographic algorithms using deep learning is a very innovative research direction. Google Brain designed a communication model using generation adversarial network and explored the encrypted communication algorithm based on machine learning. However, the encrypted communication model it designed lacks quantitative evaluation. When some plaintexts and keys are leaked at the same time, the security of communication cannot be guaranteed. This model is optimized to enhance the security by adjusting the optimizer, modifying the activation function, and increasing batch normalization to improve communication speed of optimization. Experiments were performed on 16 bits and 64 bits plaintexts communication. With plaintext and key leak rate of 0.75, the decryption error rate of the decryptor is 0.01 and the attacker can't guess any valid information about the communication.
2023-04-28
Hao, Wei, Shen, Chuanbao, Yang, Xing, Wang, Chao.  2022.  Intelligent Penetration and Attack Simulation System Based on Attack Chain. 2022 15th International Symposium on Computational Intelligence and Design (ISCID). :204–207.
Vulnerability assessment is an important process for network security. However, most commonly used vulnerability assessment methods still rely on expert experience or rule-based automated scripts, which are difficult to meet the security requirements of increasingly complex network environment. In recent years, although scientists and engineers have made great progress on artificial intelligence in both theory and practice, it is a challenging to manufacture a mature high-quality intelligent products in the field of network security, especially in penetration testing based vulnerability assessment for enterprises. Therefore, in order to realize the intelligent penetration testing, Vul.AI with its rich experience in cyber attack and defense for many years has designed and developed a set of intelligent penetration and attack simulation system Ai.Scan, which is based on attack chain, knowledge graph and related evaluation algorithms. In this paper, the realization principle, main functions and application scenarios of Ai.Scan are introduced in detail.
ISSN: 2473-3547
2022-04-19
Zheng, Tong-Xing, Yang, Ziteng, Wang, Chao, Li, Zan, Yuan, Jinhong, Guan, Xiaohong.  2021.  Wireless Covert Communications Aided by Distributed Cooperative Jamming Over Slow Fading Channels. IEEE Transactions on Wireless Communications. 20:7026–7039.
In this paper, we study covert communications between a pair of legitimate transmitter-receiver against a watchful warden over slow fading channels. There coexist multiple friendly helper nodes who are willing to protect the covert communication from being detected by the warden. We propose an uncoordinated jammer selection scheme where those helpers whose instantaneous channel gains to the legitimate receiver fall below a pre-established selection threshold will be chosen as jammers radiating jamming signals to defeat the warden. By doing so, the detection accuracy of the warden is expected to be severely degraded while the desired covert communication is rarely affected. We then jointly design the optimal selection threshold and message transmission rate for maximizing covert throughput under the premise that the detection error of the warden exceeds a certain level. Numerical results are presented to validate our theoretical analyses. It is shown that the multi-jammer assisted covert communication outperforms the conventional single-jammer method in terms of covert throughput, and the maximal covert throughput improves significantly as the total number of helpers increases, which demonstrates the validity and superiority of our proposed scheme.
Conference Name: IEEE Transactions on Wireless Communications
2022-07-12
Duan, Xiaowei, Han, Yiliang, Wang, Chao, Ni, Huanhuan.  2021.  Optimization of Encrypted Communication Length Based on Generative Adversarial Network. 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI). :165—170.
With the development of artificial intelligence and cryptography, intelligent cryptography will be the trend of encrypted communications in the future. Abadi designed an encrypted communication model based on a generative adversarial network, which can communicate securely when the adversary knows the ciphertext. The communication party and the adversary fight against each other to continuously improve their own capabilities to achieve a state of secure communication. However, this model can only have a better communication effect under the 16 bits communication length, and cannot adapt to the length of modern encrypted communication. Combine the neural network structure in DCGAN to optimize the neural network of the original model, and at the same time increase the batch normalization process, and optimize the loss function in the original model. Experiments show that under the condition of the maximum 2048-bit communication length, the decryption success rate of communication reaches about 0.97, while ensuring that the adversary’s guess error rate is about 0.95, and the training speed is greatly increased to keep it below 5000 steps, ensuring safety and efficiency Communication.
2021-08-17
Zheng, Gang, Xu, Xinzhong, Wang, Chao.  2020.  An Effective Target Address Generation Method for IPv6 Address Scan. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :73–77.
In recent years, IPv6 and its application are more and more widely deployed. Most network devices support and open IPv6 protocol stack. The security of IPv6 network is also concerned. In the IPv6 network security technology, address scanning is a key and difficult point. This paper presents a TGAs-based IPv6 address scanning method. It takes the known alive IPv6 addresses as input, and then utilizes the information entropy and clustering technology to mine the distribution law of seed addresses. Then, the final optimized target address set can be obtained by expanding from the seed address set according to the distribution law. Experimental results show that it can effectively improve the efficiency of IPv6 address scanning.
2021-05-03
Paulsen, Brandon, Wang, Jingbo, Wang, Jiawei, Wang, Chao.  2020.  NEURODIFF: Scalable Differential Verification of Neural Networks using Fine-Grained Approximation. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :784–796.
As neural networks make their way into safety-critical systems, where misbehavior can lead to catastrophes, there is a growing interest in certifying the equivalence of two structurally similar neural networks - a problem known as differential verification. For example, compression techniques are often used in practice for deploying trained neural networks on computationally- and energy-constrained devices, which raises the question of how faithfully the compressed network mimics the original network. Unfortunately, existing methods either focus on verifying a single network or rely on loose approximations to prove the equivalence of two networks. Due to overly conservative approximation, differential verification lacks scalability in terms of both accuracy and computational cost. To overcome these problems, we propose NEURODIFF, a symbolic and fine-grained approximation technique that drastically increases the accuracy of differential verification on feed-forward ReLU networks while achieving many orders-of-magnitude speedup. NEURODIFF has two key contributions. The first one is new convex approximations that more accurately bound the difference of two networks under all possible inputs. The second one is judicious use of symbolic variables to represent neurons whose difference bounds have accumulated significant error. We find that these two techniques are complementary, i.e., when combined, the benefit is greater than the sum of their individual benefits. We have evaluated NEURODIFF on a variety of differential verification tasks. Our results show that NEURODIFF is up to 1000X faster and 5X more accurate than the state-of-the-art tool.
2020-07-30
He, Yongzhong, Zhao, Xiaojuan, Wang, Chao.  2019.  Privacy Mining of Large-scale Mobile Usage Data. 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :81—86.
While enjoying the convenience brought by mobile phones, users have been exposed to high risk of private information leakage. It is known that many applications on mobile devices read private data and send them to remote servers. However how, when and in what scale the private data are leaked are not investigated systematically in the real-world scenario. In this paper, a framework is proposed to analyze the usage data from mobile devices and the traffic data from the mobile network and make a comprehensive privacy leakage detection and privacy inference mining on a large scale of realworld mobile data. Firstly, this paper sets up a training dataset and trains a privacy detection model on mobile traffic data. Then classical machine learning tools are used to discover private usage patterns. Based on our experiments and data analysis, it is found that i) a large number of private information is transmitted in plaintext, and even passwords are transmitted in plaintext by some applications, ii) more privacy types are leaked in Android than iOS, while GPS location is the most leaked privacy in both Android and iOS system, iii) the usage pattern is related to mobile device price. Through our experiments and analysis, it can be concluded that mobile privacy leakage is pervasive and serious.
2020-06-12
Gu, Feng, Zhang, Hong, Wang, Chao, Wu, Fan.  2019.  SAR Image Super-Resolution Based on Noise-Free Generative Adversarial Network. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :2575—2578.

Deep learning has been successfully applied to the ordinary image super-resolution (SR). However, since the synthetic aperture radar (SAR) images are often disturbed by multiplicative noise known as speckle and more blurry than ordinary images, there are few deep learning methods for the SAR image SR. In this paper, a deep generative adversarial network (DGAN) is proposed to reconstruct the pseudo high-resolution (HR) SAR images. First, a generator network is constructed to remove the noise of low-resolution SAR image and generate HR SAR image. Second, a discriminator network is used to differentiate between the pseudo super-resolution images and the realistic HR images. The adversarial objective function is introduced to make the pseudo HR SAR images closer to real SAR images. The experimental results show that our method can maintain the SAR image content with high-level noise suppression. The performance evaluation based on peak signal-to-noise-ratio and structural similarity index shows the superiority of the proposed method to the conventional CNN baselines.

2019-12-17
Guo, Shengjian, Wu, Meng, Wang, Chao.  2018.  Adversarial Symbolic Execution for Detecting Concurrency-Related Cache Timing Leaks. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. :377-388.
The timing characteristics of cache, a high-speed storage between the fast CPU and the slow memory, may reveal sensitive information of a program, thus allowing an adversary to conduct side-channel attacks. Existing methods for detecting timing leaks either ignore cache all together or focus only on passive leaks generated by the program itself, without considering leaks that are made possible by concurrently running some other threads. In this work, we show that timing-leak-freedom is not a compositional property: a program that is not leaky when running alone may become leaky when interleaved with other threads. Thus, we develop a new method, named adversarial symbolic execution, to detect such leaks. It systematically explores both the feasible program paths and their interleavings while modeling the cache, and leverages an SMT solver to decide if there are timing leaks. We have implemented our method in LLVM and evaluated it on a set of real-world ciphers with 14,455 lines of C code in total. Our experiments demonstrate both the efficiency of our method and its effectiveness in detecting side-channel leaks.
2018-12-10
Wang, Dong, Ming, Jiang, Chen, Ting, Zhang, Xiaosong, Wang, Chao.  2018.  Cracking IoT Device User Account via Brute-force Attack to SMS Authentication Code. Proceedings of the First Workshop on Radical and Experiential Security. :57–60.

IoT device usually has an associated application to facilitate customers' interactions with the device, and customers need to register an account to use this application as well. Due to the popularity of mobile phone, a customer is encouraged to register an account with his own mobile phone number. After binding the device to his account, the customer can control his device remotely with his smartphone. When a customer forgets his password, he can use his mobile phone to receive a verification code that is sent by the Short Message Service (SMS) to authenticate and reset his password. If an attacker gains this code, he can steal the victim's account (reset password or login directly) to control the IoT device. Although IoT device vendors have already deployed a set of security countermeasures to protect account such as setting expiration time for SMS authentication code, HTTP encryption, and application packing, this paper shows that existing IoT account password reset via SMS authentication code are still vulnerable to brute-force attacks. In particular, we present an automatic brute-force attack to bypass current protections and then crack IoT device user account. Our preliminary study on popular IoT devices such as smart lock, smart watch, smart router, and sharing car has discovered six account login zero-day vulnerabilities.