Biblio

Filters: Author is Zhang, Hong  [Clear All Filters]
2023-05-19
Wang, Tongwen, Ma, Jinhui, Shen, Xincun, Zhang, Hong.  2022.  Security Access Assurance Related Technologies Survey. 2022 European Conference on Communication Systems (ECCS). :16—22.
The security and reliability of power grid dispatching system is the basis of the stable development of the whole social economy. With the development of information, computer science and technology, communication technology, and network technology, using more advanced intelligent technology to improve the performance of security and reliability of power grid dispatching system has important research value and practical significance. In order to provide valuable references for relevant researchers and for the construction of future power system related applications. This paper summarizes the latest technical status of attribute encryption and hierarchical identity encryption methods, and introduces the access control method based on attribute and hierarchical identity encryption, the construction method of attribute encryption scheme, revocable CP-ABE scheme and its application in power grid data security access control. Combined with multi authorization center encryption, third-party trusted entity and optimized encryption algorithm, the parallel access control algorithm of hierarchical identity and attribute encryption and its application in power grid data security access control are introduced.
2023-05-12
Li, Shushan, Wang, Meng, Zhang, Hong.  2022.  Deadlock Detection for MPI Programs Based on Refined Match-sets. 2022 IEEE International Conference on Cluster Computing (CLUSTER). :82–93.

Deadlock is one of the critical problems in the message passing interface. At present, most techniques for detecting the MPI deadlock issue rely on exhausting all execution paths of a program, which is extremely inefficient. In addition, with the increasing number of wildcards that receive events and processes, the number of execution paths raises exponentially, further worsening the situation. To alleviate the problem, we propose a deadlock detection approach called SAMPI based on match-sets to avoid exploring execution paths. In this approach, a match detection rule is employed to form the rough match-sets based on Lazy Lamport Clocks Protocol. Then we design three refining algorithms based on the non-overtaking rule and MPI communication mechanism to refine the match-sets. Finally, deadlocks are detected by analyzing the refined match-sets. We performed the experimental evaluation on 15 various programs, and the experimental results show that SAMPI is really efficient in detecting deadlocks in MPI programs, especially in handling programs with many interleavings.

ISSN: 2168-9253

2020-06-12
Gu, Feng, Zhang, Hong, Wang, Chao, Wu, Fan.  2019.  SAR Image Super-Resolution Based on Noise-Free Generative Adversarial Network. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :2575—2578.

Deep learning has been successfully applied to the ordinary image super-resolution (SR). However, since the synthetic aperture radar (SAR) images are often disturbed by multiplicative noise known as speckle and more blurry than ordinary images, there are few deep learning methods for the SAR image SR. In this paper, a deep generative adversarial network (DGAN) is proposed to reconstruct the pseudo high-resolution (HR) SAR images. First, a generator network is constructed to remove the noise of low-resolution SAR image and generate HR SAR image. Second, a discriminator network is used to differentiate between the pseudo super-resolution images and the realistic HR images. The adversarial objective function is introduced to make the pseudo HR SAR images closer to real SAR images. The experimental results show that our method can maintain the SAR image content with high-level noise suppression. The performance evaluation based on peak signal-to-noise-ratio and structural similarity index shows the superiority of the proposed method to the conventional CNN baselines.

2020-05-18
Zhou, Wei, Yang, Weidong, Wang, Yan, Zhang, Hong.  2018.  Generalized Reconstruction-Based Contribution for Multiple Faults Diagnosis with Bayesian Decision. 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). :813–818.
In fault diagnosis of industrial process, there are usually more than one variable that are faulty. When multiple faults occur, the generalized reconstruction-based contribution can be helpful while traditional RBC may make mistakes. Due to the correlation between the variables, these faults usually propagate to other normal variables, which is called smearing effect. Thus, it is helpful to consider the pervious fault diagnosis results. In this paper, a data-driven fault diagnosis method which is based on generalized RBC and bayesian decision is presented. This method combines multi-dimensional RBC and bayesian decision. The proposed method improves the diagnosis capability of multiple and minor faults with greater noise. A numerical simulation example is given to show the effectiveness and superiority of the proposed method.