Biblio

Filters: Author is Jiani Li  [Clear All Filters]
2019-05-31
Jiani Li, Xenofon Koutsoukos.  Submitted.  Resilient Distributed Diffusion in Networks with Adversaries. IEEE Transactions on Signal and Information Processing over Networks. Under review..
2020-10-08
Xingyu Zhou, Yi Li, Carlos A. Barreto, Jiani Li, Peter Volgyesi, Himanshu Neema, Xenofon Koutsoukos.  2020.  Evaluating Resilience of Grid Load Predictions under Stealthy Adversarial Attacks. 2019 Resilience Week (RWS).

Recent advances in machine learning enable wider applications of prediction models in cyber-physical systems. Smart grids are increasingly using distributed sensor settings for distributed sensor fusion and information processing. Load forecasting systems use these sensors to predict future loads to incorporate into dynamic pricing of power and grid maintenance. However, these inference predictors are highly complex and thus vulnerable to adversarial attacks. Moreover, the adversarial attacks are synthetic norm-bounded modifications to a limited number of sensors that can greatly affect the accuracy of the overall predictor. It can be much cheaper and effective to incorporate elements of security and resilience at the earliest stages of design. In this paper, we demonstrate how to analyze the security and resilience of learning-based prediction models in power distribution networks by utilizing a domain-specific deep-learning and testing framework. This framework is developed using DeepForge and enables rapid design and analysis of attack scenarios against distributed smart meters in a power distribution network. It runs the attack simulations in the cloud backend. In addition to the predictor model, we have integrated an anomaly detector to detect adversarial attacks targeting the predictor. We formulate the stealthy adversarial attacks as an optimization problem to maximize prediction loss while minimizing the required perturbations. Under the worst-case setting, where the attacker has full knowledge of both the predictor and the detector, an iterative attack method has been developed to solve for the adversarial perturbation. We demonstrate the framework capabilities using a GridLAB-D based power distribution network model and show how stealthy adversarial attacks can affect smart grid prediction systems even with a partial control of network.

2019-05-30
Jiani Li, Xenofon Koutsoukos.  2018.  Resilient Distributed Diffusion for Multi-task Estimation. 14th International Conference on Distributed Computing in Sensor Systems (DCOSS). :93-102.

Distributed diffusion is a powerful algorithm for multi-task state estimation which enables networked agents to interact with neighbors to process input data and diffuse infor- mation across the network. Compared to a centralized approach, diffusion offers multiple advantages that include robustness to node and link failures. In this paper, we consider distributed diffusion for multi-task estimation where networked agents must estimate distinct but correlated states of interest by processing streaming data. By exploiting the adaptive weights used for diffusing information, we develop attack models that drive normal agents to converge to states selected by the attacker. The attack models can be used for both stationary and non- stationary state estimation. In addition, we develop a resilient distributed diffusion algorithm under the assumption that the number of compromised nodes in the neighborhood of each normal node is bounded by F and we show that resilience may be obtained at the cost of performance degradation. Finally, we evaluate the proposed attack models and resilient distributed diffusion algorithm using stationary and non-stationary multi- target localization.