Biblio

Filters: Author is Himanshu Neema  [Clear All Filters]
2021-08-11
2020-10-12
Dasom Lee, David J. Hess, Himanshu Neema.  2020.  The challenges of implementing transactive energy: A comparative analysis of experimental projects. The Electricity Journal. 33(10)

This study examines the results of field experiments of transactive energy systems (TESs) in order to identify challenges that occur with the integration of TESs with existing software, hardware, appliances, and customer practices. Three types of challenges, and potential responses and solutions, are identified for the implementation phase of TESs: systematic risk to existing building functions, lack of readiness of users and connected systems, and lack of competitiveness with existing demand-management systems and products.

2020-10-08
Xingyu Zhou, Yi Li, Carlos A. Barreto, Jiani Li, Peter Volgyesi, Himanshu Neema, Xenofon Koutsoukos.  2020.  Evaluating Resilience of Grid Load Predictions under Stealthy Adversarial Attacks. 2019 Resilience Week (RWS).

Recent advances in machine learning enable wider applications of prediction models in cyber-physical systems. Smart grids are increasingly using distributed sensor settings for distributed sensor fusion and information processing. Load forecasting systems use these sensors to predict future loads to incorporate into dynamic pricing of power and grid maintenance. However, these inference predictors are highly complex and thus vulnerable to adversarial attacks. Moreover, the adversarial attacks are synthetic norm-bounded modifications to a limited number of sensors that can greatly affect the accuracy of the overall predictor. It can be much cheaper and effective to incorporate elements of security and resilience at the earliest stages of design. In this paper, we demonstrate how to analyze the security and resilience of learning-based prediction models in power distribution networks by utilizing a domain-specific deep-learning and testing framework. This framework is developed using DeepForge and enables rapid design and analysis of attack scenarios against distributed smart meters in a power distribution network. It runs the attack simulations in the cloud backend. In addition to the predictor model, we have integrated an anomaly detector to detect adversarial attacks targeting the predictor. We formulate the stealthy adversarial attacks as an optimization problem to maximize prediction loss while minimizing the required perturbations. Under the worst-case setting, where the attacker has full knowledge of both the predictor and the detector, an iterative attack method has been developed to solve for the adversarial perturbation. We demonstrate the framework capabilities using a GridLAB-D based power distribution network model and show how stealthy adversarial attacks can affect smart grid prediction systems even with a partial control of network.

Carlos Barreto, Himanshu Neema, Xenofon Koutsoukos.  2020.  Attacking Electricity Markets Through IoT Devices. Computer (Long Beach, Calif.). 53(5):55-62.

 

Smart appliances, or Internet of Things devices, participate autonomously in electricity markets and improve grid efficiency, but their remote access and control capabilities also introduce vulnerabilities. We show how an adverse generator can manipulate market clearing prices and propose mitigation strategies to correct the impact.

Himanshu Neema, Peter Volgyesi, Xenofon Koutsoukos, Thomas Roth, Cuong Nguyen.  2020.  Online Testbed for Evaluating Vulnerability of Deep Learning Based Power Grid Load Forecasters. Modeling and Simulation of Cyber-Physical Energy Systems.

Modern electric grids that integrate smart grid technologies require different approaches to grid operations. There has been a shift towards increased reliance on distributed sensors to monitor bidirectional power flows and machine learning based load forecasting methods (e.g., using deep learning). These methods are fairly accurate under normal circumstances, but become highly vulnerable to stealthy adversarial attacks that could be deployed on the load forecasters. This paper provides a novel model-based Testbed for Simulation-based Evaluation of Resilience (TeSER) that enables evaluating deep learning based load forecasters against stealthy adversarial attacks. The testbed leverages three existing technologies, viz. DeepForge: for designing neural networks and machine learning pipelines, GridLAB-D: for electric grid distribution system simulation, and WebGME: for creating web-based collaborative metamodeling environments. The testbed architecture is described, and a case study to demonstrate its capabilities for evaluating load forecasters is provided.

2020-10-02
Himanshu Neema, Janos Sztipanovits, David J. Hess, Dasom Lee.  2020.  TE-SAT: Transactive Energy Simulation and Toolsuite. 2020 IEEE Workshop on Design Automation for CPS and IoT (DESTION).

Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.

Himanshu Neema, Harsh Vardhan, Carlos Barreto, Xenofon Koutsoukos.  2019.  Design and simulation platform for evaluation of grid distribution system and transactive energy. 6th Annual Symposium on Hot Topics in the Science of Security.

With the advent of remarkable development of solar power panel and inverter technology and focus on reducing greenhouse emissions, there is increased migration from fossil fuels to carbon-free energy sources (e.g., solar, wind, and geothermal). A new paradigm called Transactive Energy (TE) has emerged that utilizes economic and control techniques to effectively manage Distributed Energy Resources (DERs). Another goal of TE is to improve grid reliability and efficiency. However, to evaluate various TE approaches, a comprehensive simulation tool is needed that is easy to use and capable of simulating the power-grid along with various grid operational scenarios that occur in the transactive energy paradigm. In this research, we present a web-based design and simulation platform (called a design studio) targeted toward evaluation of power-grid distribution system and transactive energy approaches. The design studio allows to edit and visualize existing power-grid models graphically, create new power-grid network models, simulate those networks, and inject various scenario-specific perturbations to evaluate specific configurations of transactive energy simulations. The design studio provides (i) a novel Domain-Specific Modeling Language (DSML) using the Web-based Generic Modeling Environment (WebGME) for the graphical modeling of power-grid, cyber-physical attacks, and TE scenarios, and (ii) a reusable cloud-hosted simulation backend using the Gridlab-D power-grid distribution system simulation tool.

2020-10-08
Harsh Vardhan, Neal M. Sarkar, Himanshu Neema.  2019.  Modeling and Optimization of a Longitudinally-Distributed Global Solar Grid. International Conference on Power Systems.

Our simulation-based experiments are aimed to demonstrate a use case on the feasibility of fulfillment of global energy demand by primarily relying on solar energy through the integration of a longitudinally-distributed grid. These experiments demonstrate the availability of simulation technologies, good approximation models of grid components, and data for simulation. We also experimented with integrating different tools to create realistic simulations as we are currently developing a detailed toolchain for experimentation. These experiments consist of a network of model houses at different locations in the world, each producing and consuming only solar energy. The model includes houses, various appliances, appliance usage schedules, regional weather information, floor area, HVAC systems, population, number of houses in the region, and other parameters to imitate a real-world scenario. Data gathered from the power system simulation is used to develop optimization models to find the optimal solar panel area required at the different locations to satisfy energy demands in different scenarios.

2019-08-21
Himanshu Neema, Janos Sztipanovits, Cornelius Steinbrink, Thomas Raub, Bastian Cornelsen, Sebastian Lehnhoff.  2019.  Simulation Integration Platforms for Cyber-physical Systems. Workshop on Design Automation for Cyber-Physical Systems and Internet-of-Things. :10–19.

Simulation-based analysis is essential in the model-based design process of Cyber-Physical Systems (CPS). Since heterogeneity is inherent to CPS, virtual prototyping of CPS designs and the simulation of their behavior in various environments typically involve a number of physical and computation/communication domains interacting with each other. Affordability of the model-based design process makes the use of existing domain-specific modeling and simulation tools all but mandatory. However, this pressure establishes the requirement for integrating the domain-specific models and simulators into a semantically consistent and efficient system-of-system simulation. The focus of the paper is the interoperability of popular integration platforms supporting heterogeneous multi-model simulations. We examine the relationship among three existing platforms: the High-Level Architecture (HLA)-based CPS Wind Tunnel (CPSWT), MOSAIK, and the Functional Mockup Unit (FMU). We discuss approaches to establish interoperability and present results of ongoing work in the context of an example.

2020-10-02
Himanshu Neema, Harsh Vardhan, Carlos Barreto, Xenofon Koutsoukos.  2019.  Web-Based Platform for Evaluation of Resilient and Transactive Smart-Grids. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES).

Today's smart-grids have seen a clear rise in new ways of energy generation, transmission, and storage. This has not only introduced a huge degree of variability, but also a continual shift away from traditionally centralized generation and storage to distributed energy resources (DERs). In addition, the distributed sensors, energy generators and storage devices, and networking have led to a huge increase in attack vectors that make the grid vulnerable to a variety of attacks. The interconnection between computational and physical components through a largely open, IP-based communication network enables an attacker to cause physical damage through remote cyber-attacks or attack on software-controlled grid operations via physical- or cyber-attacks. Transactive Energy (TE) is an emerging approach for managing increasing DERs in the smart-grids through economic and control techniques. Transactive Smart-Grids use the TE approach to improve grid reliability and efficiency. However, skepticism remains in their full-scale viability for ensuring grid reliability. In addition, different TE approaches, in specific situations, can lead to very different outcomes in grid operations. In this paper, we present a comprehensive web-based platform for evaluating resilience of smart-grids against a variety of cyber- and physical-attacks and evaluating impact of various TE approaches on grid performance. We also provide several case-studies demonstrating evaluation of TE approaches as well as grid resilience against cyber and physical attacks. 

2021-12-21
Himanshu Neema, Janos Sztipanovits, Cornelius Steinbrink, Thomas Raub, Bastian Cornelsen, Sebastian Lehnhoff.  2019.  Simulation integration platforms for cyber-physical systems. DESTION 2019. :10-19.

Simulation-based analysis is essential in the model-based design process of Cyber-Physical Systems (CPS). Since heterogeneity is inherent to CPS, virtual prototyping of CPS designs and the simulation of their behavior in various environments typically involve a number of physical and computation/ communication domains interacting with each other. Affordability of the model-based design process makes the use of existing domain-specific modeling and simulation tools all but mandatory. However, this pressure establishes the requirement for integrating the domain-specific models and simulators into a semantically consistent and efficient system-of-system simulation. The focus of the paper is the interoperability of popular integration platforms supporting heterogeneous multi-model simulations. We examine the relationship among three existing platforms: the High-Level Architecture (HLA)-based CPS Wind Tunnel (CPSWT), MOSAIK, and the Functional Mockup Unit (FMU). We discuss approaches to establish interoperability and present results of ongoing work in the context of an example.

David Holmberg, Martin Burns, Steven Bushby, Avi Gopstein, Tom McDermott, Yingying Tang, Qiuhua Huang, Annabelle Pratt, Mark Ruth, Yogesh Bichpuriya et al..  2019.  NIST Transactive Energy Modeling and Simulation Challenge Phase II Final Report.

The NIST Transactive Energy (TE) Modeling and Simulation Challenge for the Smart Grid (Challenge) spanned from 2015 to 2018. The TE Challenge was initiated to identify simulation tools and expertise that might be developed or combined in co-simulation platforms to enable the evaluation of transactive energy approaches. Phase I of the Challenge spanned 2015 to 2016, with team efforts that improved understanding of TE concepts, identified relevant simulation tools and co-simulation platforms, and inspired the development of a TE co-simulation abstract component model that paved the way for Phase II. The Phase II effort spanned Spring 2017 through Spring 2018, where the teams collaboratively developed a specific TE problem scenario, a common grid topology, and common reporting metrics to enable direct comparison of results from simulation of each team's TE approach for the defined scenario. This report presents an overview of the TE Challenge, the TE abstract component model, and the common scenario. It also compiles the individual Challenge participants' research reports from Phase II. The common scenario involves a weather event impacting a distribution grid with very high penetration of photovoltaics, leading to voltage regulation challenges that are to be mitigated by TE methods. Four teams worked with this common scenario and different TE models to incentivize distributed resource response to voltage deviations, performing these simulations on different simulation platforms. A fifth team focused on a co-simulation platform that can be used for online TE simulations with existing co-simulation components. The TE Challenge Phase II has advanced co-simulation modeling tools and platforms for TE system performance analysis, developed a referenceable TE scenario that can support ongoing comparative simulations, and demonstrated various TE approaches for managing voltage on a distribution grid with high penetration of photovoltaics.

2018-09-30
Himanshu Neema, Bradley Potteiger, Xenofon Koutsoukos, Gabor Karsai, Peter Volgyesi, Janos Sztipanovits.  2018.  Integrated Simulation Testbed for Security and Resilience of CPS. Proceedings of the 33rd Annual ACM Symposium on Applied Computing. :368–374.

Owing1 to an immense growth of internet-connected and learning-enabled cyber-physical systems (CPSs) [1], several new types of attack vectors have emerged. Analyzing security and resilience of these complex CPSs is difficult as it requires evaluating many subsystems and factors in an integrated manner. Integrated simulation of physical systems and communication network can provide an underlying framework for creating a reusable and configurable testbed for such analyses. Using a model-based integration approach and the IEEE High-Level Architecture (HLA) [2] based distributed simulation software; we have created a testbed for integrated evaluation of large-scale CPS systems. Our tested supports web-based collaborative metamodeling and modeling of CPS system and experiments and a cloud computing environment for executing integrated networked co-simulations. A modular and extensible cyber-attack library enables validating the CPS under a variety of configurable cyber-attacks, such as DDoS and integrity attacks. Hardware-in-the-loop simulation is also supported along with several hardware attacks. Further, a scenario modeling language allows modeling of alternative paths (Courses of Actions) that enables validating CPS under different what-if scenarios as well as conducting cyber-gaming experiments. These capabilities make our testbed well suited for analyzing security and resilience of CPS. In addition, the web-based modeling and cloud-hosted execution infrastructure enables one to exercise the entire testbed using simply a web-browser, with integrated live experimental results display.

2019-05-30
Xenofon Koutsoukos, Gabor Karsai, Aron Laszka, Himanshu Neema, Bradley Potteiger, Peter Volgyesi, Yevgeniy Vorobeychik, Janos Sztipanovits.  2018.  SURE: A Modeling and Simulation Integration Platform for Evaluation of Secure and Resilient Cyber–Physical Systems. Proceedings of the IEEE. 106:93-112.

The exponential growth of information and communication technologies have caused a profound shift in the way humans engineer systems leading to the emergence of closed-loop systems involving strong integration and coordination of physical and cyber components, often referred to as cyber-physical systems (CPSs). Because of these disruptive changes, physical systems can now be attacked through cyberspace and cyberspace can be attacked through physical means. The paper considers security and resilience as system properties emerging from the intersection of system dynamics and the computing architecture. A modeling and simulation integration platform for experimentation and evaluation of resilient CPSs is presented using smart transportation systems as the application domain. Evaluation of resilience is based on attacker-defender games using simulations of sufficient fidelity. The platform integrates 1) realistic models of cyber and physical components and their interactions; 2) cyber attack models that focus on the impact of attacks to CPS behavior and operation; and 3) operational scenarios that can be used for evaluation of cybersecurity risks. Three case studies are presented to demonstrate the advantages of the platform: 1) vulnerability analysis of transportation networks to traffic signal tampering; 2) resilient sensor selection for forecasting traffic flow; and 3) resilient traffic signal control in the presence of denial-of-service attacks.

2021-12-21
Thomas Roth, Yuyin Song, Martin Burns, Himanshu Neema, William Emfinger, Janos Sztipanovits.  2017.  Cyber-Physical System Development Environment for Energy Applications. 2017 11th International Conference on Energy Sustainability (ES2017).

Cyber-physical systems (CPS) are smart systems that consist of highly interconnected networks of physical and computational components. The tight integration of a wide range of heterogeneous components enables new functionality and quality of life improvements in critical infrastructures such as smart cities, intelligent buildings, and smart energy systems. One approach to study CPS uses both simulations and hardware-in-theloop (HIL) to test the physical dynamics of hardware in a controlled environment. However, because CPS experiment design may involve domain experts from multiple disciplines who use different simulation tool suites, it can be a challenge to integrate the heterogeneous simulation languages and hardware interfaces into a single HIL simulation. The National Institute of Standards and Technology (NIST) is working on the development of a universal CPS environment for federation (UCEF) that can be used to design and run experiments that incorporate heterogeneous physical and computational resources over a wide geographic area. This development environment uses the High Level Architecture (HLA), which the Department of Defense has advocated for co-simulation in the field of distributed simulations, to enable communication between hardware and different simulation languages such as Simulink and LabVIEW. This paper provides an overview of UCEF and motivates how the environment could be used to develop energy applications using an illustrative example of an emulated heat pump system.

2019-05-31
Bradley Potteiger, William Emfinger, Himanshu Neema, Xenofon Koutsoukos, CheeYee Tang, Keith Stouffer.  2017.  Evaluating the effects of cyber-attacks on cyber physical systems using a hardware-in-the-loop simulation testbed. Resilience Week (RWS). :177-183.

Cyber-Physical Systems (CPS) consist of embedded computers with sensing and actuation capability, and are integrated into and tightly coupled with a physical system. Because the physical and cyber components of the system are tightly coupled, cyber-security is important for ensuring the system functions properly and safely. However, the effects of a cyberattack on the whole system may be difficult to determine, analyze, and therefore detect and mitigate. This work presents a model based software development framework integrated with a hardware-in-the-loop (HIL) testbed for rapidly deploying CPS attack experiments. The framework provides the ability to emulate low level attacks and obtain platform specific performance measurements that are difficult to obtain in a traditional simulation environment. The framework improves the cybersecurity design process which can become more informed and customized to the production environment of a CPS. The developed framework is illustrated with a case study of a railway transportation system.