Biblio

Filters: Author is Shukla, S.  [Clear All Filters]
2017-04-20
Gupta, K., Shukla, S..  2016.  Internet of Things: Security challenges for next generation networks. 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH). :315–318.

Internet of Things(IoT) is the next big boom in the networking field. The vision of IoT is to connect daily used objects (which have the ability of sensing and actuation) to the Internet. This may or may or may not involve human. IoT field is still maturing and has many open issues. We build up on the security issues. As the devices have low computational power and low memory the existing security mechanisms (which are a necessity) should also be optimized accordingly or a clean slate approach needs to be followed. This is a survey paper to focus on the security aspects of IoT. We further also discuss the open challenges in this field.

2015-05-05
Shukla, S., Sadashivappa, G..  2014.  Secure multi-party computation protocol using asymmetric encryption. Computing for Sustainable Global Development (INDIACom), 2014 International Conference on. :780-785.

Privacy preservation is very essential in various real life applications such as medical science and financial analysis. This paper focuses on implementation of an asymmetric secure multi-party computation protocol using anonymization and public-key encryption where all parties have access to trusted third party (TTP) who (1) doesn't add any contribution to computation (2) doesn't know who is the owner of the input received (3) has large number of resources (4) decryption key is known to trusted third party (TTP) to get the actual input for computation of final result. In this environment, concern is to design a protocol which deploys TTP for computation. It is proposed that the protocol is very proficient (in terms of secure computation and individual privacy) for the parties than the other available protocols. The solution incorporates protocol using asymmetric encryption scheme where any party can encrypt a message with the public key but decryption can be done by only the possessor of the decryption key (private key). As the protocol works on asymmetric encryption and packetization it ensures following: (1) Confidentiality (Anonymity) (2) Security (3) Privacy (Data).