Biblio

Filters: Author is Xu, Jianliang  [Clear All Filters]
2021-11-08
Li, Gao, Xu, Jianliang, Shen, Weiguo, Wang, Wei, Liu, Zitong, Ding, Guoru.  2020.  LSTM-based Frequency Hopping Sequence Prediction. 2020 International Conference on Wireless Communications and Signal Processing (WCSP). :472–477.
The continuous change of communication frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication. The core of this communication process is the frequency-hopping (FH) sequence with pseudo-random characteristics, which controls carrier frequency hopping. However, FH sequence is always generated by a certain model and is a kind of time sequence with certain regularity. Long Short-Term Memory (LSTM) neural network in deep learning has been proved to have strong ability to solve time series problems. Therefore, in this paper, we establish LSTM model to implement FH sequence prediction. The simulation results show that LSTM-based scheme can effectively predict frequency point by point based on historical HF frequency data. Further, we achieve frequency interval prediction based on frequency point prediction.
2019-08-05
Xu, Cheng, Xu, Jianliang, Hu, Haibo, Au, Man Ho.  2018.  When Query Authentication Meets Fine-Grained Access Control: A Zero-Knowledge Approach. Proceedings of the 2018 International Conference on Management of Data. :147-162.

Query authentication has been extensively studied to ensure the integrity of query results for outsourced databases, which are often not fully trusted. However, access control, another important security concern, is largely ignored by existing works. Notably, recent breakthroughs in cryptography have enabled fine-grained access control over outsourced data. In this paper, we take the first step toward studying the problem of authenticating relational queries with fine-grained access control. The key challenge is how to protect information confidentiality during query authentication, which is essential to many critical applications. To address this challenge, we propose a novel access-policy-preserving (APP) signature as the primitive authenticated data structure. A useful property of the APP signature is that it can be used to derive customized signatures for unauthorized users to prove the inaccessibility while achieving the zero-knowledge confidentiality. We also propose a grid-index-based tree structure that can aggregate APP signatures for efficient range and join query authentication. In addition to this, a number of optimization techniques are proposed to further improve the authentication performance. Security analysis and performance evaluation show that the proposed solutions and techniques are robust and efficient under various system settings.