Biblio
The Internet has gradually penetrated into the national economy, politics, culture, military, education and other fields. Due to its openness, interconnectivity and other characteristics, the Internet is vulnerable to all kinds of malicious attacks. The research uses a honeynet to collect attacker information, and proposes a network penetration recognition technology based on interactive behavior analysis. Using Sebek technology to capture the attacker's keystroke record, time series modeling of the keystroke sequences of the interaction behavior is proposed, using a Recurrent Neural Network. The attack recognition method is constructed by using Long Short-Term Memory that solves the problem of gradient disappearance, gradient explosion and long-term memory shortage in ordinary Recurrent Neural Network. Finally, the experiment verifies that the short-short time memory network has a high accuracy rate for the recognition of penetration attacks.
The problem of network representation learning, also known as network embedding, arises in many machine learning tasks assuming that there exist a small number of variabilities in the vertex representations which can capture the "semantics" of the original network structure. Most existing network embedding models, with shallow or deep architectures, learn vertex representations from the sampled vertex sequences such that the low-dimensional embeddings preserve the locality property and/or global reconstruction capability. The resultant representations, however, are difficult for model generalization due to the intrinsic sparsity of sampled sequences from the input network. As such, an ideal approach to address the problem is to generate vertex representations by learning a probability density function over the sampled sequences. However, in many cases, such a distribution in a low-dimensional manifold may not always have an analytic form. In this study, we propose to learn the network representations with adversarially regularized autoencoders (NetRA). NetRA learns smoothly regularized vertex representations that well capture the network structure through jointly considering both locality-preserving and global reconstruction constraints. The joint inference is encapsulated in a generative adversarial training process to circumvent the requirement of an explicit prior distribution, and thus obtains better generalization performance. We demonstrate empirically how well key properties of the network structure are captured and the effectiveness of NetRA on a variety of tasks, including network reconstruction, link prediction, and multi-label classification.
Massive and dynamic networks arise in many practical applications such as social media, security and public health. Given an evolutionary network, it is crucial to detect structural anomalies, such as vertices and edges whose "behaviors'' deviate from underlying majority of the network, in a real-time fashion. Recently, network embedding has proven a powerful tool in learning the low-dimensional representations of vertices in networks that can capture and preserve the network structure. However, most existing network embedding approaches are designed for static networks, and thus may not be perfectly suited for a dynamic environment in which the network representation has to be constantly updated. In this paper, we propose a novel approach, NetWalk, for anomaly detection in dynamic networks by learning network representations which can be updated dynamically as the network evolves. We first encode the vertices of the dynamic network to vector representations by clique embedding, which jointly minimizes the pairwise distance of vertex representations of each walk derived from the dynamic networks, and the deep autoencoder reconstruction error serving as a global regularization. The vector representations can be computed with constant space requirements using reservoir sampling. On the basis of the learned low-dimensional vertex representations, a clustering-based technique is employed to incrementally and dynamically detect network anomalies. Compared with existing approaches, NetWalk has several advantages: 1) the network embedding can be updated dynamically, 2) streaming network nodes and edges can be encoded efficiently with constant memory space usage, 3) flexible to be applied on different types of networks, and 4) network anomalies can be detected in real-time. Extensive experiments on four real datasets demonstrate the effectiveness of NetWalk.
The increasing adoption of 3D printing in many safety and mission critical applications exposes 3D printers to a variety of cyber attacks that may result in catastrophic consequences if the printing process is compromised. For example, the mechanical properties (e.g., physical strength, thermal resistance, dimensional stability) of 3D printed objects could be significantly affected and degraded if a simple printing setting is maliciously changed. To address this challenge, this study proposes a model-free real-time online process monitoring approach that is capable of detecting and defending against the cyber-physical attacks on the firmwares of 3D printers. Specifically, we explore the potential attacks and consequences of four key printing attributes (including infill path, printing speed, layer thickness, and fan speed) and then formulate the attack models. Based on the intrinsic relation between the printing attributes and the physical observations, our defense model is established by systematically analyzing the multi-faceted, real-time measurement collected from the accelerometer, magnetometer and camera. The Kalman filter and Canny filter are used to map and estimate three aforementioned critical toolpath information that might affect the printing quality. Mel-frequency Cepstrum Coefficients are used to extract features for fan speed estimation. Experimental results show that, for a complex 3D printed design, our method can achieve 4% Hausdorff distance compared with the model dimension for infill path estimate, 6.07% Mean Absolute Percentage Error (MAPE) for speed estimate, 9.57% MAPE for layer thickness estimate, and 96.8% accuracy for fan speed identification. Our study demonstrates that, this new approach can effectively defend against the cyber-physical attacks on 3D printers and 3D printing process.
Computing similarity, especially Jaccard Similarity, between two datasets is a fundamental building block in big data analytics, and extensive applications including genome matching, plagiarism detection, social networking, etc. The increasing user privacy concerns over the release of has sensitive data have made it desirable and necessary for two users to evaluate Jaccard Similarity over their datasets in a privacy-preserving manner. In this paper, we propose two efficient and secure protocols to compute the Jaccard Similarity of two users' private sets with the help of an unfully-trusted server. Specifically, in order to boost the efficiency, we leverage Minhashing algorithm on encrypted data, where the output of our protocols is guaranteed to be a close approximation of the exact value. In both protocols, only an approximate similarity result is leaked to the server and users. The first protocol is secure against a semi-honest server, while the second protocol, with a novel consistency-check mechanism, further achieves result verifiability against a malicious server who cheats in the executions. Experimental results show that our first protocol computes an approximate Jaccard Similarity of two billion-element sets within only 6 minutes (under 256-bit security in parallel mode). To the best of our knowledge, our consistency-check mechanism represents the very first work to realize an efficient verification particularly on approximate similarity computation.
Proxy Re-Encryption (PRE) is a favorable primitive to realize a cryptographic cloud with secure and flexible data sharing mechanism. A number of PRE schemes with versatile capabilities have been proposed for different applications. The secure data sharing can be internally achieved in each PRE scheme. But no previous work can guarantee the secure data sharing among different PRE schemes in a general manner. Moreover, it is challenging to solve this problem due to huge differences among the existing PRE schemes in their algebraic systems and public-key types. To solve this problem more generally, this paper uniforms the definitions of the existing PRE and Public Key Encryption (PKE) schemes, and further uniforms their security definitions. Then taking any uniformly defined PRE scheme and any uniformly defined PKE scheme as two building blocks, this paper constructs a Generally Hybrid Proxy Re-Encryption (GHPRE) scheme with the idea of temporary public and private keys to achieve secure data sharing between these two underlying schemes. Since PKE is a more general definition than PRE, the proposed GHPRE scheme also is workable between any two PRE schemes. Moreover, the proposed GHPRE scheme can be transparently deployed even if the underlying PRE schemes are implementing.
Benefiting bythe large time-bandwidth product, chirp signals arefrequentlyadopted in modern radars. In this paper, the influence on thehigh-resolution range profile (HRRP) reconstruction of chirp waveform after sub-Nyquist sampling is investigated, where the (compressive sensing) CS-based dechirpingalgorithms are applied to achieve the range compression of the sub-Nyquist sampled chirp signals. The conditions that the HRRP can be recovered from the sub-Nyquist sampled chirp signals via CS-based dechirping are addressed. The simulated echoes, formed by the sub-Nyquist sampled chirp signals and scattered by moving targets, are collected by radars to yieldthe high-resolution range profile (HRRP) which validate the correctness of the analyses.