Biblio

Filters: Author is Du, Ruiying  [Clear All Filters]
2019-10-23
Chen, Jing, Yao, Shixiong, Yuan, Quan, He, Kun, Ji, Shouling, Du, Ruiying.  2018.  CertChain: Public and Efficient Certificate Audit Based on Blockchain for TLS Connections. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2060-2068.

In recent years, real-world attacks against PKI take place frequently. For example, malicious domains' certificates issued by compromised CAs are widespread, and revoked certificates are still trusted by clients. In spite of a lot of research to improve the security of SSL/TLS connections, there are still some problems unsolved. On one hand, although log-based schemes provided certificate audit service to quickly detect CAs' misbehavior, the security and data consistency of log servers are ignored. On the other hand, revoked certificates checking is neglected due to the incomplete, insecure and inefficient certificate revocation mechanisms. Further, existing revoked certificates checking schemes are centralized which would bring safety bottlenecks. In this paper, we propose a blockchain-based public and efficient audit scheme for TLS connections, which is called Certchain. Specially, we propose a dependability-rank based consensus protocol in our blockchain system and a new data structure to support certificate forward traceability. Furthermore, we present a method that utilizes dual counting bloom filter (DCBF) with eliminating false positives to achieve economic space and efficient query for certificate revocation checking. The security analysis and experimental results demonstrate that CertChain is suitable in practice with moderate overhead.

2019-12-30
Chen, Jing, Du, Ruiying.  2009.  Fault Tolerance and Security in Forwarding Packets Using Game Theory. 2009 International Conference on Multimedia Information Networking and Security. 2:534–537.
In self-organized wireless network, such as ad hoc network, sensor network or mesh network, nodes are independent individuals which have different benefit; Therefore, selfish nodes refuse to forward packets for other nodes in order to save energy which causes the network fault. At the same time, some nodes may be malicious, whose aim is to damage the network. In this paper, we analyze the cooperation stimulation and security in self-organized wireless networks under a game theoretic framework. We first analyze a four node wireless network in which nodes share the channel by relaying for others during its idle periods in order to help the other nodes, each node has to use a part of its available channel capacity. And then, the fault tolerance and security problem is modeled as a non-cooperative game in which each player maximizes its own utility function. The goal of the game is to maximize the utility function in the giving condition in order to get better network efficiency. At last, for characterizing the efficiency of Nash equilibria, we analyze the so called price of anarchy, as the ratio between the objective function at the worst Nash equilibrium and the optimal objective function. Our results show that the players can get the biggest payoff if they obey cooperation strategy.