Biblio

Filters: Author is Chen, Jing  [Clear All Filters]
2023-06-22
Chen, Jing, Yang, Lei, Qiu, Ziqiao.  2022.  Survey of DDoS Attack Detection Technology for Traceability. 2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE). :112–115.
Target attack identification and detection has always been a concern of network security in the current environment. However, the economic losses caused by DDoS attacks are also enormous. In recent years, DDoS attack detection has made great progress mainly in the user application layer of the network layer. In this paper, a review and discussion are carried out according to the different detection methods and platforms. This paper mainly includes three parts, which respectively review statistics-based machine learning detection, target attack detection on SDN platform and attack detection on cloud service platform. Finally, the research suggestions for DDoS attack detection are given.
2022-03-01
Li, Xiaojian, Chen, Jing, Jiang, Yiyi, Hu, Hangping, Yang, Haopeng.  2021.  An Accountability-Oriented Generation approach to Time-Varying Structure of Cloud Service. 2021 IEEE International Conference on Services Computing (SCC). :413–418.
In the current cloud service development, during the widely used of cloud service, it can self organize and respond on demand when the cloud service in phenomenon of failure or violation, but it may still cause violation. The first step in forecasting or accountability for this situation, is to generate a dynamic structure of cloud services in a timely manner. In this research, it has presented a method to generate the time-varying structure of cloud service. Firstly, dependencies between tasks and even instances within a job of cloud service are visualized to explore the time-varying characteristics contained in the cloud service structure. And then, those dependencies are discovered quantitatively using CNN (Convolutional Neural Networks). Finally, it structured into an event network of cloud service for tracing violation and other usages. A validation to this approach has been examined by an experiment based on Alibaba’s dataset. A function integrity of this approach may up to 0.80, which is higher than Bai Y and others which is no more than 0.60.
2020-05-29
HOU, RUI, Han, Min, Chen, Jing, Hu, Wenbin, Tan, Xiaobin, Luo, Jiangtao, Ma, Maode.  2019.  Theil-Based Countermeasure against Interest Flooding Attacks for Named Data Networks. IEEE Network. 33:116—121.

NDN has been widely regarded as a promising representation and implementation of information- centric networking (ICN) and serves as a potential candidate for the future Internet architecture. However, the security of NDN is threatened by a significant safety hazard known as an IFA, which is an evolution of DoS and distributed DoS attacks on IP-based networks. The IFA attackers can create numerous malicious interest packets into a named data network to quickly exhaust the bandwidth of communication channels and cache capacity of NDN routers, thereby seriously affecting the routers' ability to receive and forward packets for normal users. Accurate detection of the IFAs is the most critical issue in the design of a countermeasure. To the best of our knowledge, the existing IFA countermeasures still have limitations in terms of detection accuracy, especially for rapidly volatile attacks. This article proposes a TC to detect the distributions of normal and malicious interest packets in the NDN routers to further identify the IFA. The trace back method is used to prevent further attempts. The simulation results show the efficiency of the TC for mitigating the IFAs and its advantages over other typical IFA countermeasures.

2020-05-22
Chen, Jing, Tong, Wencan, Li, Xiaojian, Jiang, Yiyi, Zhu, Liyu.  2019.  A Survey of Time-varying Structural Modeling to Accountable Cloud Services. 2019 IEEE International Conference on Computation, Communication and Engineering (ICCCE). :9—12.

Cloud service has the computing characteristics of self-organizing strain on demand, which is prone to failure or loss of responsibility in its extensive application. In the prediction or accountability of this, the modeling of cloud service structure becomes an insurmountable priority. This paper reviews the modeling of cloud service network architecture. It mainly includes: Firstly, the research status of cloud service structure modeling is analyzed and reviewed. Secondly, the classification of time-varying structure of cloud services and the classification of time-varying structure modeling methods are summarized as a whole. Thirdly, it points out the existing problems. Finally, for cloud service accountability, research approach of time-varying structure modeling is proposed.

2019-10-23
Chen, Jing, Yao, Shixiong, Yuan, Quan, He, Kun, Ji, Shouling, Du, Ruiying.  2018.  CertChain: Public and Efficient Certificate Audit Based on Blockchain for TLS Connections. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2060-2068.

In recent years, real-world attacks against PKI take place frequently. For example, malicious domains' certificates issued by compromised CAs are widespread, and revoked certificates are still trusted by clients. In spite of a lot of research to improve the security of SSL/TLS connections, there are still some problems unsolved. On one hand, although log-based schemes provided certificate audit service to quickly detect CAs' misbehavior, the security and data consistency of log servers are ignored. On the other hand, revoked certificates checking is neglected due to the incomplete, insecure and inefficient certificate revocation mechanisms. Further, existing revoked certificates checking schemes are centralized which would bring safety bottlenecks. In this paper, we propose a blockchain-based public and efficient audit scheme for TLS connections, which is called Certchain. Specially, we propose a dependability-rank based consensus protocol in our blockchain system and a new data structure to support certificate forward traceability. Furthermore, we present a method that utilizes dual counting bloom filter (DCBF) with eliminating false positives to achieve economic space and efficient query for certificate revocation checking. The security analysis and experimental results demonstrate that CertChain is suitable in practice with moderate overhead.

2017-07-24
Chen, Jing, McCauley, Samuel, Singh, Shikha.  2016.  Rational Proofs with Multiple Provers. Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. :237–248.

Interactive proofs model a world where a verifier delegates computation to an untrustworthy prover, verifying the prover's claims before accepting them. These proofs have applications to delegation of computation, probabilistically checkable proofs, crowdsourcing, and more. In some of these applications, the verifier may pay the prover based on the quality of his work. Rational proofs, introduced by Azar and Micali (2012), are an interactive proof model in which the prover is rational rather than untrustworthy–-he may lie, but only to increase his payment. This allows the verifier to leverage the greed of the prover to obtain better protocols: while rational proofs are no more powerful than interactive proofs, the protocols are simpler and more efficient. Azar and Micali posed as an open problem whether multiple provers are more powerful than one for rational proofs. We provide a model that extends rational proofs to allow multiple provers. In this model, a verifier can cross-check the answers received by asking several provers. The verifier can pay the provers according to the quality of their work, incentivizing them to provide correct information. We analyze rational proofs with multiple provers from a complexity-theoretic point of view. We fully characterize this model by giving tight upper and lower bounds on its power. On the way, we resolve Azar and Micali's open problem in the affirmative, showing that multiple rational provers are strictly more powerful than one (under standard complexity-theoretic assumptions). We further show that the full power of rational proofs with multiple provers can be achieved using only two provers and five rounds of interaction. Finally, we consider more demanding models where the verifier wants the provers' payment to decrease significantly when they are lying, and fully characterize the power of the model when the payment gap must be noticeable (i.e., at least 1/p where p is a polynomial).

2015-06-30
Yang, Weining, Chen, Jing, Xiong, Aiping, Proctor, Robert W, Li, Ninghui.  2015.  Effectiveness of a phishing warning in field settings. Proceedings of the 2015 Symposium and Bootcamp on the Science of Security. :14.

We have begun to investigate the effectiveness of a phishing warning Chrome extension in a field setting of everyday computer use. A preliminary experiment has been conducted in which participants installed and used the extension. They were required to fill out an online browsing behavior questionnaire by clicking on a survey link sent in a weekly email by us. Two phishing attacks were simulated during the study by directing participants to "fake" (phishing) survey sites we created. Almost all participants who saw the warnings on our fake sites input incorrect passwords, but follow-up interviews revealed that only one participant did so intentionally. A follow-up interview revealed that the warning failure was mainly due to the survey task being mandatory. Another finding of interest from the interview was that about 50% of the participants had never heard of phishing or did not understand its meaning.

2015-09-28
2016-05-04
Proctor, Robert W., Chen, Jing.  2015.  The Role of Human Factors/Ergonomics in the Science of Security: Decision Making and Action Selection in Cyberspace. Human Factors: The Journal of the Human Factors and Ergonomics Society.

Objective: The overarching goal is to convey the concept of science of security and the contributions that a scientifically based, human factors approach can make to this interdisciplinary field.Background: Rather than a piecemeal approach to solving cybersecurity problems as they arise, the U.S. government is mounting a systematic effort to develop an approach grounded in science. Because humans play a central role in security measures, research on security-related decisions and actions grounded in principles of human information-processing and decision-making is crucial to this interdisciplinary effort.Method: We describe the science of security and the role that human factors can play in it, and use two examples of research in cybersecurity—detection of phishing attacks and selection of mobile applications—to illustrate the contribution of a scientific, human factors approach.Results: In these research areas, we show that systematic information-processing analyses of the decisions that users make and the actions they take provide a basis for integrating the human component of security science.Conclusion: Human factors specialists should utilize their foundation in the science of applied information processing and decision making to contribute to the science of cybersecurity.

2019-12-30
Chen, Jing, Du, Ruiying.  2009.  Fault Tolerance and Security in Forwarding Packets Using Game Theory. 2009 International Conference on Multimedia Information Networking and Security. 2:534–537.
In self-organized wireless network, such as ad hoc network, sensor network or mesh network, nodes are independent individuals which have different benefit; Therefore, selfish nodes refuse to forward packets for other nodes in order to save energy which causes the network fault. At the same time, some nodes may be malicious, whose aim is to damage the network. In this paper, we analyze the cooperation stimulation and security in self-organized wireless networks under a game theoretic framework. We first analyze a four node wireless network in which nodes share the channel by relaying for others during its idle periods in order to help the other nodes, each node has to use a part of its available channel capacity. And then, the fault tolerance and security problem is modeled as a non-cooperative game in which each player maximizes its own utility function. The goal of the game is to maximize the utility function in the giving condition in order to get better network efficiency. At last, for characterizing the efficiency of Nash equilibria, we analyze the so called price of anarchy, as the ratio between the objective function at the worst Nash equilibrium and the optimal objective function. Our results show that the players can get the biggest payoff if they obey cooperation strategy.