Biblio
NDN has been widely regarded as a promising representation and implementation of information- centric networking (ICN) and serves as a potential candidate for the future Internet architecture. However, the security of NDN is threatened by a significant safety hazard known as an IFA, which is an evolution of DoS and distributed DoS attacks on IP-based networks. The IFA attackers can create numerous malicious interest packets into a named data network to quickly exhaust the bandwidth of communication channels and cache capacity of NDN routers, thereby seriously affecting the routers' ability to receive and forward packets for normal users. Accurate detection of the IFAs is the most critical issue in the design of a countermeasure. To the best of our knowledge, the existing IFA countermeasures still have limitations in terms of detection accuracy, especially for rapidly volatile attacks. This article proposes a TC to detect the distributions of normal and malicious interest packets in the NDN routers to further identify the IFA. The trace back method is used to prevent further attempts. The simulation results show the efficiency of the TC for mitigating the IFAs and its advantages over other typical IFA countermeasures.
Cloud service has the computing characteristics of self-organizing strain on demand, which is prone to failure or loss of responsibility in its extensive application. In the prediction or accountability of this, the modeling of cloud service structure becomes an insurmountable priority. This paper reviews the modeling of cloud service network architecture. It mainly includes: Firstly, the research status of cloud service structure modeling is analyzed and reviewed. Secondly, the classification of time-varying structure of cloud services and the classification of time-varying structure modeling methods are summarized as a whole. Thirdly, it points out the existing problems. Finally, for cloud service accountability, research approach of time-varying structure modeling is proposed.
In recent years, real-world attacks against PKI take place frequently. For example, malicious domains' certificates issued by compromised CAs are widespread, and revoked certificates are still trusted by clients. In spite of a lot of research to improve the security of SSL/TLS connections, there are still some problems unsolved. On one hand, although log-based schemes provided certificate audit service to quickly detect CAs' misbehavior, the security and data consistency of log servers are ignored. On the other hand, revoked certificates checking is neglected due to the incomplete, insecure and inefficient certificate revocation mechanisms. Further, existing revoked certificates checking schemes are centralized which would bring safety bottlenecks. In this paper, we propose a blockchain-based public and efficient audit scheme for TLS connections, which is called Certchain. Specially, we propose a dependability-rank based consensus protocol in our blockchain system and a new data structure to support certificate forward traceability. Furthermore, we present a method that utilizes dual counting bloom filter (DCBF) with eliminating false positives to achieve economic space and efficient query for certificate revocation checking. The security analysis and experimental results demonstrate that CertChain is suitable in practice with moderate overhead.
Interactive proofs model a world where a verifier delegates computation to an untrustworthy prover, verifying the prover's claims before accepting them. These proofs have applications to delegation of computation, probabilistically checkable proofs, crowdsourcing, and more. In some of these applications, the verifier may pay the prover based on the quality of his work. Rational proofs, introduced by Azar and Micali (2012), are an interactive proof model in which the prover is rational rather than untrustworthy–-he may lie, but only to increase his payment. This allows the verifier to leverage the greed of the prover to obtain better protocols: while rational proofs are no more powerful than interactive proofs, the protocols are simpler and more efficient. Azar and Micali posed as an open problem whether multiple provers are more powerful than one for rational proofs. We provide a model that extends rational proofs to allow multiple provers. In this model, a verifier can cross-check the answers received by asking several provers. The verifier can pay the provers according to the quality of their work, incentivizing them to provide correct information. We analyze rational proofs with multiple provers from a complexity-theoretic point of view. We fully characterize this model by giving tight upper and lower bounds on its power. On the way, we resolve Azar and Micali's open problem in the affirmative, showing that multiple rational provers are strictly more powerful than one (under standard complexity-theoretic assumptions). We further show that the full power of rational proofs with multiple provers can be achieved using only two provers and five rounds of interaction. Finally, we consider more demanding models where the verifier wants the provers' payment to decrease significantly when they are lying, and fully characterize the power of the model when the payment gap must be noticeable (i.e., at least 1/p where p is a polynomial).
We have begun to investigate the effectiveness of a phishing warning Chrome extension in a field setting of everyday computer use. A preliminary experiment has been conducted in which participants installed and used the extension. They were required to fill out an online browsing behavior questionnaire by clicking on a survey link sent in a weekly email by us. Two phishing attacks were simulated during the study by directing participants to "fake" (phishing) survey sites we created. Almost all participants who saw the warnings on our fake sites input incorrect passwords, but follow-up interviews revealed that only one participant did so intentionally. A follow-up interview revealed that the warning failure was mainly due to the survey task being mandatory. Another finding of interest from the interview was that about 50% of the participants had never heard of phishing or did not understand its meaning.
Objective: The overarching goal is to convey the concept of science of security and the contributions that a scientifically based, human factors approach can make to this interdisciplinary field.Background: Rather than a piecemeal approach to solving cybersecurity problems as they arise, the U.S. government is mounting a systematic effort to develop an approach grounded in science. Because humans play a central role in security measures, research on security-related decisions and actions grounded in principles of human information-processing and decision-making is crucial to this interdisciplinary effort.Method: We describe the science of security and the role that human factors can play in it, and use two examples of research in cybersecurity—detection of phishing attacks and selection of mobile applications—to illustrate the contribution of a scientific, human factors approach.Results: In these research areas, we show that systematic information-processing analyses of the decisions that users make and the actions they take provide a basis for integrating the human component of security science.Conclusion: Human factors specialists should utilize their foundation in the science of applied information processing and decision making to contribute to the science of cybersecurity.